MODEL ANSWERS TO THE THIRD HOMEWORK

1. Chapter 4, §3: 5. I and A are additive subgroups, and the intersection of subgroups is a subgroup, so that $I \cap A$ is an additive subgroup of R, whence of A.
 Now suppose that $a \in A$ and $i \in I \cap A$. Then $a \in R$ and I is an ideal of R, so that $ai \in I$. On the other hand, A is a subring of R, so that $ai \in A$ as i and a are in A. Thus $ai \in I \cap A$. It follows that $I \cap A$ is an ideal.

6. As in the previous question, $I \cap J$ is an additive subgroup, as both I and J are. Suppose that $r \in R$ and $a \in I \cap J$. As $a \in I$ and I is an ideal, $ra \in I$. Similarly $ra \in J$. But then $ra \in I \cap J$ and $I \cap J$ is an ideal.

15. Suppose that $a \in R$. Then $a \in IJ$ if and only if a has the form $i_1j_1 + i_2j_2 + \cdots + i_kj_k$, where i_1, i_2, \ldots, i_k and j_1, j_2, \ldots, j_k are in I and J respectively. It is therefore clear that IJ is closed under addition and it is clear that IJ is non-empty. Thus IJ is an additive subgroup. Suppose that $r \in R$ and $a \in I$. Then

$$ra = r(i_1j_1 + i_2j_2 + \cdots + i_kj_k)$$
$$= (ri_1)j_1 + (ri_2)j_2 + \cdots (ri_k)j_k.$$

As $ri_p \in I$, for all all p, it follows that ra is in IJ. Similarly ar is in IJ, and so IJ is an ideal.

18. Under addition, the set $R \oplus S$, with addition defined componentwise, is equal to the set $R \times S$, with addition defined componentwise. We have already seen that this is a group, in 100A. It remains to check that we have a ring. It is easy to see that multiplication is associative and that $(1, 1)$ plays the role of the identity; in fact just mimic the relevant steps of the proof given in 100A that we have a group under addition.
Finally it remains to check the distributive law. Suppose that \(x = (a, b), y = (c, d), \) and \(z = (e, f) \in R \oplus S. \) Then

\[
x(y + z) = (a, b) ((c, d) + (e, f)) \\
= (a, b)(c + e, d + f) \\
= (a(e + c), b(d + f)) \\
= (ac + ae, bd + bf) \\
= (ac + ae, bd + bf) \\
= (ac, bd) + (ae, bf) \\
= (a, b)(c, d) + (a, b)(e, f) \\
= xy + xz.
\]

Thus the distributive law holds.

Define a map \(\phi: R \oplus S \rightarrow S \) be sending \((r, s)\) to \(s\). As we saw in 100A, this is a group homomorphism, of the underlying additive groups. It remains to check what happens under multiplication, but the proof is obviously the same as checking addition. Thus \(\phi \) is a ring homomorphism. The kernel is obviously

\[
I = \{ (r, 0) \mid r \in R \}.
\]

In particular \(I \) is an ideal. Consider the map \(\psi: R \rightarrow R \oplus S \) such that \(\psi(r) = (r, 0) \). This is obviously a bijection with \(I \) and it was checked in 100A that it is a group homomorphism. It is easy to see that in fact \(\psi \) is also a ring homomorphism. The rest follows by symmetry.

Finally, in terms of what comes next in the homework, I claim that \(R \oplus S \) is both the direct sum and product in the category of rings. Both the direct sum and the product are defined in terms of universal properties. I define the product first.

The categorical product of \(R \) and \(S \), denoted \(R \times S \) is an object together with two morphisms \(p: R \times S \rightarrow R \) and \(q: R \times S \rightarrow S \) that are universal amongst all such morphisms, in the following sense.

Suppose that there are morphisms \(f: T \rightarrow R \) and \(g: T \rightarrow S \). Then there is a unique morphism \(T \rightarrow R \times S \) which makes the following
A direct sum is precisely the same as a product, except where we switch the arrows. That is, the direct sum \(R \oplus S \) satisfies the following universal property. There are ring homomorphisms, \(a: R \to R \oplus S \) and \(b: S \to R \oplus S \) such that given any pair of ring homomorphisms \(c: R \to T \) and \(d: S \to T \) there is a unique ring homomorphism \(f: R \oplus S \to T \) such that the following diagram commutes,

\[
\begin{array}{ccc}
R & \xrightarrow{a} & R \oplus S \\
\downarrow{c} & & \downarrow{f} \\
R \oplus S & \xrightarrow{f} & T \\
\downarrow{b} & & \downarrow{d} \\
S & \xrightarrow{d} & T
\end{array}
\]

The reader is invited to prove that \(R \oplus S \) does indeed satisfy the universal properties of both the direct sum and the product.

19. (a) As \(R \) is a subset of the \(2 \times 2 \) matrices, it suffices to check that \(R \) is non-empty (clear as \(R \) contains the zero matrix), closed under addition and inverses (easy check) and closed under multiplication. Suppose \(A \) and \(B \) are two matrices in \(R \). Then

\[
A = \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \quad B = \begin{pmatrix} a' & b' \\ 0 & c' \end{pmatrix}
\]

for some \(a, b, c, a', b' \) and \(c' \in \mathbb{R} \). Then

\[
AB = \begin{pmatrix} aa' & ab' + a'b \\ 0 & cc' \end{pmatrix}.
\]

Thus \(AB \in R \) and \(R \) is indeed a ring.

Another, slightly more sophisticated, way to solve this problem is as follows. Matrices in \(R \) correspond to linear maps

\[
\phi: \mathbb{R}^2 \to \mathbb{R}^2
\]
such that the vector $e_2 = (0, 1)$ is an eigenvalue of ϕ, that is $\phi(e_2) = ce_2$.

With this description of R, it is very easy to see that R is an additive subgroup of 2×2 matrices and that it is closed under multiplication.

(b) I is clearly non-empty and closed under addition, so that I is an additive subgroup. Now suppose $A \in R$ and $B \in I$, so that

$$A = \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \quad \quad B = \begin{pmatrix} 0 & d \\ 0 & 0 \end{pmatrix}. $$

Then

$$AB = \begin{pmatrix} 0 & ad \\ 0 & 0 \end{pmatrix},$$

and

$$BA = \begin{pmatrix} 0 & cd \\ 0 & 0 \end{pmatrix}.$$

Thus both AB and BA are in I. It follows that I is an ideal.

Again, another way to see this is to state that I corresponds to all transformations ϕ of \mathbb{R}^2, such that $\phi(e_1) = be_2$ and e_2 is in the kernel of ϕ. The fact that I is an ideal then follows readily.

(c) Define a map

$$\phi: R \rightarrow F \oplus F$$

by sending

$$A = \begin{pmatrix} a & b \\ 0 & c \end{pmatrix}$$

to the vector $(a, c) \in F \oplus F$. We first check that ϕ is a ring homomorphism. It is not hard to see that ϕ respects addition, so that if A and B are in R then $\phi(A + B) = \phi(A) + \phi(B)$. We check multiplication. We use the notation as in (1). Then

$$\phi(AB) = (aa', bb')$$

$$= (a, b)(a', b')$$

$$= \phi(A)\phi(B).$$

Thus ϕ is certainly a ring homomorphism. It is also clearly surjective and the kernel is equal to I (thereby providing a different proof that I is an ideal). The result follows by the Isomorphism Theorem.

20. The fact that the map ϕ is a ring homomorphism follows immediately from the universal property of $R \oplus S$. Now suppose that $r \in \text{Ker } \phi$. Then $r + I = I$, so that $r \in I$ and similarly $r \in J$. Thus $r \in I \cap J$. Thus $\text{Ker } \phi \subset I \cap J$. The reverse inclusion is just as easy to prove. Thus $\text{Ker } \phi = I \cap J$.

22. (a) Clearly a multiple of mn is a multiple of m and a multiple of n so that $I_{mn} \subset I_m \cap I_n$. Now suppose that $a \in I_m \cap I_n$. Then $a = bm$
and $a = cn$. As m and n are coprime, by Euclid’s algorithm, there are two integers r and s such that

$$1 = rm + sn.$$

Multiplying by a, we have

$$a = rma + sna = (rc)mn + (sb)mn = (rc + sb)mn.$$

Thus $a \in I_{mn}$ and so $I_{mn} = I_m \cap I_n$.

(b) Apply (20) to $R = \mathbb{Z}$. It follows that there is a ring homomorphism

$$\phi: \mathbb{Z} \rightarrow \mathbb{Z}/I_m \oplus \mathbb{Z}/I_n,$$

such that $I_m \cap I_n = I_{mn}$ is the kernel. Thus, by the Isomorphism Theorem, there is an injective ring homomorphism

$$\psi: \mathbb{Z}/I_{mn} \rightarrow \mathbb{Z}/I_m \oplus \mathbb{Z}/I_n$$

23. By 20 (b) we already know that there is an injective ring homomorphism from one to the other. On the other hand, both sides have cardinality mn. It follows that the given ring homomorphism is in fact an isomorphism.

2. Chapter 4, §4: 1. Note that if 3 does not divide a, then either a is congruent to 1 or 2 modulo 3. Either way a^2 is congruent to $1 = 1^2 = 2^2$ modulo three. In this case $a^2 + b^2$ is congruent to either $1 = 1 + 0$ or $2 = 1 + 1$, modulo three. Thus 3 does not divide $a^2 + b^2$.

2. It is proved in example that M is maximal so that R/M is a field and so it suffices to prove that R/M has cardinality 9. There are two ways, essentially equivalent, ways to proceed. The first is to observe that $a + bi$ and $c + di$ generate the same left coset if and only if $(a-c) + (b-d)i \in I$, that is 3 divides $a-c$ and 3 divides $b-d$. In turn, this is equivalent to saying that a and c (respectively b and d) have the same residue modulo 3. As there are 3 residues modulo three, namely 0, 1 and 2, there are $9 = 3 \times 3$ left cosets, and R/M has cardinality 9.

The second way to proceed is to define a map

$$\phi: \mathbb{Z}[i] \rightarrow \mathbb{Z} \oplus \mathbb{Z},$$

by sending $a + bi$ to (a, b). It is easy to check that this map is a group homomorphism (and just as easy to see that it is not a ring homomorphism). Under this correspondence, I corresponds to $3\mathbb{Z} \oplus 3\mathbb{Z}$ and so the cardinality of R/M is equal to the cardinality of

$$\frac{\mathbb{Z} \oplus \mathbb{Z}}{3\mathbb{Z} \oplus 3\mathbb{Z}} \simeq \mathbb{Z}_3 \oplus \mathbb{Z}_3.$$
which, as before, is $9 = 3 \times 3$.

7. First note that, as $\sqrt{2}$ is irrational, then

$$a + b\sqrt{2} = c + d\sqrt{2},$$

if and only if $a = c$ and $b = d$. Indeed if $b = d$, then this is clear. Otherwise, we can solve for $\sqrt{2}$ to obtain

$$\sqrt{2} = \frac{a - c}{d - b} \in \mathbb{Q},$$

a contradiction. Thus the fact that R/M has 25 elements follows, as in 2.

It remains to prove that M is maximal. Given two integers a and b, consider $a^2 - 2b^2$. As in 2 and 7, the key point to establish is that if 5 does not divide either a of b then it does not divide $a^2 - 2b^2$. The squares modulo 5 are 0, 1 and 4, and multiplying by three we get 0, 3 and 2. If we take the sum of one number from the first list and one number from the second, as before, the only way to get a number congruent to zero modulo 5, is to pick zero from both. The rest follows as in example 2.

8. Take I to be the set of all Gaussian integers of the form $a + bi$, where both a and b are divisible by 7. The key point is that if 7 does not divide a, then 7 does not divide $a^2 + b^2$. Indeed the squares modulo seven are 0, 1, 2 and 4, as can be seen by squaring 0, 1, 2 and 3 (for the rest observe that $a^2 = (-a)^2 = (7 - a)^2$, modulo seven). If a pair of these sum to a number divisible by 7, then both of these numbers must be 0, whence the result. The rest follows as in example 2.

3. **Bonus Problems**

26. Let $f_i : S \to R$ be the projection of S onto the ith (counting left to right and then top to bottom), for $i = 1, 2, 3$ and 4. Denote by J_i the projection of I to R, via f_i. Suppose that $a \in J_1$, so that there is a matrix

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in I.$$

Multiplying on the left and right by

$$B = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix},$$

we see that

$$\begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} \in I.$$

Now multiply by

$$B = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix},$$

$$\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}.$$
on the left to conclude that
\[
\begin{pmatrix} 0 & a \\ 0 & 0 \end{pmatrix} \in I.
\]
By symmetry, we conclude that \(J_i = J \) is independent of \(i \) and as \(I \) is an additive subgroup, that \(I \) consists of all matrices with entries in \(J \). It remains to prove that \(J \) is an ideal. It is clear that \(J \) is an additive subgroup. On the other hand if \(a \in J \) and \(r \in R \), then
\[
A = \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} \in I
\]
and
\[
B = \begin{pmatrix} r & 0 \\ 0 & 0 \end{pmatrix} \in S.
\]
Thus
\[
BA = \begin{pmatrix} ra & 0 \\ 0 & 0 \end{pmatrix} \in I,
\]
and so \(ra \in J \). Similarly \(ar \in J \) and so \(J \) is indeed an ideal.

27. Denote by \(m \) the product of the primes \(p_1, p_2, \ldots, p_n \). Then we want to know the number of solutions of \(x^2 = x \) inside the ring \(R = \mathbb{Z}_m \). By repeated application of the Chinese Remainder Theorem,
\[
\mathbb{Z}_m \cong \mathbb{Z}_{p_1} \oplus \mathbb{Z}_{p_2} \oplus \mathbb{Z}_{p_3} \oplus \cdots \oplus \mathbb{Z}_{p_n}.
\]
As multiplication is computed component by component on the RHS, solving the equation \(x^2 = x \), is equivalent to solving the \(n \) equations \(x^2 = x \) in the \(n \) rings \(\mathbb{Z}_{p_i} \) and taking the product. Now \(x = 0 \) is always a solution of \(x^2 = x \). So if \(m \) is prime and \(x \neq 0 \), \(x^2 = x \), then multiplying by the inverse of \(x \), we have \(x = 1 \). Thus, prime by prime, there are two solutions, making a total of \(2^n \) solutions in \(R \).