1. Suppose that m and n are in M. Then
\[
\phi(m + n) = r(m + n) \\
= rm + rn \\
= \phi(m) + \phi(n).
\]
Thus ϕ is additive. Now suppose that $s \in R$. Then
\[
\phi(sm) = r(sm) \\
= (rs)m \\
= s(rm) \\
= s\phi(m).
\]
Thus ϕ is R-linear.

2. Let N be a submodule of M. Then N is an additive subgroup of M and so it is non-empty and closed under addition. It is also closed under multiplication by definition of the inherited rule for multiplication. Now suppose that N is non-empty and closed under addition and scalar multiplication. As N is non-empty and closed under addition, it follows that it is an additive subgroup. The other axioms obviously hold in N, since they hold in the larger set M. Thus N is a submodule.

3. Let K be the kernel of ϕ. As ϕ is a homomorphism of the underlying additive groups, it follows that K is an additive subgroup. Suppose that $r \in R$ and $k \in K$. We have
\[
\phi(rk) = r\phi(k) \\
= r \cdot 0 \\
= 0.
\]
Thus $rk \in K$. It follows that K is closed under scalar multiplication. Therefore K is a submodule.

4. Let M_i be a collection of submodules of an R-module M and let N be their intersection. Then N is an additive subgroup as each M_i is an additive subgroup. Suppose that $r \in R$ and $n \in N$. Then for every $i \in I$, $n \in M_i$. As M_i is an R-module, it follows that $rn \in M_i$. As this is true for every i, in fact $rn \in N$. Thus N is closed under scalar multiplication and so it is a submodule.
5. Let $M_i, i \in I$ be the set of all submodules of M that contain X. Then N, the intersection of every M_i is a submodule of M, which contains X. As $N \subseteq M_i$ it is clearly the smallest such submodule.

6. Let F be the set of all functions from X to M. We need to define a rule of addition and scalar multiplication. Suppose that f and g are elements of M. Define $f + g$ as the pointwise sum, so that

$$(f + g)(x) = f(x) + g(x).$$

Similarly, given $r \in R$ and $f \in F$, define rf as the pointwise product,

$$(rf)(x) = r(f(x)).$$

It is an easy matter to check that with this rule of addition and scalar multiplication, F becomes an R-module.

7. Let $H = \text{Hom}_R(M, N)$ be the set of all R-module homomorphisms. Then H is a subset of F, the set of all functions from M to N. It suffices to prove that H is non-empty and closed under addition and scalar multiplication.

First note that the zero map, which sends every element of M to the zero element of N, is R-linear. Thus H is certainly non-empty. Suppose that f and g are elements of H. We need to prove that $f + g$ is R-linear. Let m and n be elements of M and r and s be elements of R. We have

$$(f + g)(rm + sn) = f(rm + sn) + g(rm + sn)$$

$$= rf(m) + sf(n) + rg(m) + sg(n)$$

$$= rf(m) + rg(m) + sf(m) + sf(n)$$

$$= r(f + g)(m) + s(f + g)(n).$$

Thus $f + g$ is indeed R-linear. It is equally easy and just as formal to prove that rf is R-linear. Thus H is closed under addition and scalar multiplication and so H is an R-module.

8. Since the arbitrary intersection of ideals is an ideal, it suffices to prove that I is an ideal, in the case that X contains one point x. Clearly $0 \in I$. Thus I is non-empty. Suppose that i and j are elements of I. Then

$$(i + j)x = ix + jx$$

$$= 0 + 0 = 0.$$
Thus $i + j \in I$ and I is closed under addition. Now suppose that $r \in R$ and $i \in I$. Then

$$ri(x) = r(ix) = r0 = 0.$$

Thus $ri \in I$ and I is an ideal. Here is another way to conclude that I is an ideal. Let

$$\phi: R \rightarrow \text{Hom}_R(M, M)$$

be the natural map which sends an element R to the R-linear map, $m \rightarrow rm$. It is easy to see that ϕ is R-linear. Replacing M by the module generated by X, note that an element $r \in R$ is in I if and only if $\phi(r)$ is the zero map. Thus I is the kernel of ϕ. It also follows that I is also the annihilator of $\langle X \rangle$.