HOMEWORK 7, DUE TUESDAY NOVEMBER 22ND

1. For Chapter 2, Section 9: 1, 2, 3.
2. Let H and K be two normal subgroups of a group G, whose intersection is the trivial subgroup. Prove that every element of H commutes with every element of K. (Hint. Consider the commutator of an element of H and an element of K).
3. Prove that a group G is isomorphic to the product of two groups H^{\prime} and K^{\prime} if and only if G contains two normal subgroups H and K, such that
(1) H is isomorphic to H^{\prime} and K is isomorphic to K^{\prime}.
(2) $H \cap K=\{e\}$.
(3) $G=H \vee K$.
4. Challenge Problem. Find an example of a finite set, together with a binary operation, which satisfies all the axioms for a group, except associativity.
