
10. Permutation groups

Definition 10.1. Let S be a set. A permutation of S is simply a
bijection f : S −→ S.

Lemma 10.2. Let S be a set.

(1) Let f and g be two permutations of S. Then the composition of
f and g is a permutation of S.

(2) Let f be a permutation of S. Then the inverse of f is a permu-
tation of S.

Proof. Well-known. �

Lemma 10.3. Let S be a set. The set of all permutations, under the
operation of composition of permutations, forms a group A(S).

Proof. (10.2) implies that the rule of multiplication is well-defined. We
check the three axioms for a group.

We already proved that composition of functions is associative.
Let i : S −→ S be the identity function from S to S. Let f be a

permutation of S. Clearly f ◦ i = i ◦ f = f . Thus i acts as an identity.
Let f be a permutation of S. Then the inverse g of f is a permutation

of S and f ◦ g = g ◦ f = i, by definition. Thus inverses exist and G is
a group. �

Lemma 10.4. Let S be a finite set with n elements.
Then A(S) has n! elements.

Proof. Well-known. �

Definition 10.5. The group Sn is the set of permutations of the first
n natural numbers.

We want a convenient way to represent an element of Sn. The first
way is to write an element σ of Sn as a matrix.(

1 2 3 4 5
3 1 5 4 2

)
∈ S5.

Thus, for example, σ(3) = 5. With this notation it is easy to write
down products and inverses. For example suppose that

σ =

(
1 2 3 4 5
3 1 5 4 2

)
τ =

(
1 2 3 4 5
4 3 1 2 5

)
.

Then

τσ =

(
1 2 3 4 5
1 4 5 2 3

)
.
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On the other hand

στ =

(
1 2 3 4 5
4 5 3 1 2

)
.

In particular S5 is not abelian.
The problem with this way of representing elements of Sn is that we

don’t see much of the structure of τ this way. For example, it is very
hard to figure out the order of τ from this representation.

Definition 10.6. Let τ be an element of Sn.
We say that τ is a k-cycle if there are integers a1, a2, . . . , ak such

that τ(a1) = a2, τ(a2) = a3, and τ(ak) = a1 and τ fixes every other
integer.

More compactly

τ(ai) =


ai+1 i < k

a1 i = k.

ai otherwise

For example (
1 2 3 4
2 3 4 1

)
is a 4-cycle in S4 and (

1 2 3 4 5
1 5 3 2 4

)
.

is a 3-cycle in S5. Now given a k-cycle τ , there is an obvious way to
represent it, which is much more compact than the first notation.

τ = (a1, a2, a3, . . . , ak).

Thus the two examples above become,

(1, 2, 3, 4)

and

(2, 5, 4).

Note that there is some redundancy. For example, obviously

(2, 5, 4) = (5, 4, 2) = (4, 2, 5).

Note that a k-cycle has order k.

Definition-Lemma 10.7. Let σ be any element of Sn.
Then σ may be expressed as a product of disjoint cycles. This fac-

torisation is unique, ignoring 1-cycles, up to order. The cycle type of
σ is the lengths of the corresponding cycles.
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Proof. We first prove the existence of such a decomposition. Let a1 = 1
and define ak recursively by the formula

ai+1 = σ(ai).

Consider the set

{ ai | i ∈ N }.
As there are only finitely many integers between 1 and n, we must
have some repetitions, so that ai = aj, for some i < j. Pick the
smallest i and j for which this happens. Suppose that i 6= 1. Then
σ(ai−1) = ai = σ(aj−1). As σ is injective, ai−1 = aj−1. But this
contradicts our choice of i and j. Let τ be the j-cycle (a1, a2, . . . , aj).
Then ρ = στ−1 fixes each element of the set

{ ai | i ≤ j }.

Thus by an obvious induction, we may assume that ρ is a product
of k − 1 disjoint cycles τ1, τ2, . . . , τk−1 which fix this set.

But then

σ = ρτ = τ1τ2 . . . τk,

where τ = τk.
Now we prove uniqueness. Suppose that σ = σ1σ2 . . . σk and τ =

τ1τ2 . . . τl are two factorisations of σ into disjoint cycles. Suppose that
σ1(i) = j. Then for some p, τp(i) 6= i. By disjointness, in fact τp(i) = j.
Now consider σ1(j). By the same reasoning, τp(j) = σ1(j). Continuing
in this way, we get σ1 = τp. But then just cancel these terms from both
sides and continue by induction. �

Example 10.8. Let

σ =

(
1 2 3 4 5
3 4 1 5 2

)
.

Look at 1. 1 is sent to 3. But 3 is sent back to 1. Thus part of the
cycle decomposition is given by the transposition (1, 3). Now look at
what is left {2, 4, 5}. Look at 2. Then 2 is sent to 4. Now 4 is sent to
5. Finally 5 is sent to 2. So another part of the cycle type is given by
the 3-cycle (2, 4, 5).

I claim then that

σ = (1, 3)(2, 4, 5) = (2, 4, 5)(1, 3).

This is easy to check. The cycle type is (2, 3).

As promised, it is easy to compute the order of a permutation, given
its cycle type.
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Lemma 10.9. Let σ ∈ Sn be a permutation, with cycle type (k1, k2, . . . , kl).
The the order of σ is the least common multiple m of k1, k2, . . . , kl.

Proof. Let k be the order of σ and let σ = τ1τ2 . . . τl be the decompo-
sition of σ into disjoint cycles of length k1, k2, . . . , kn.

Pick any integer h. As τ1, τ2, . . . , τl are disjoint, it follows that

σh = τh1 τ
h
2 . . . τ

h
l .

Moreover the RHS is equal to the identity, if and only if each individual
term is equal to the identity.

It follows that
τ ki = e.

In particular ki divides k. Thus the least common multiple, m of
k1, k2, . . . , kl divides k. But σm = τm1 τ

m
2 τ

m
3 . . . τml = e. Thus m divides

k and so k = m. �

Note that (10.7) implies that the cycles generate Sn. It is a natural
question to ask if there is a smaller subset which generates Sn. In fact
the 2-cycles generate.

Lemma 10.10. The transpositions generate Sn.

Proof. It suffices to prove that every permutation is a product of trans-
positions.

We give two proofs of this fact.
Here is the first proof. As every permutation σ is a product of cycles,

it suffices to check that every cycle is a product of transpositions.
Consider the k-cycle σ = (a1, a2, . . . , ak). I claim that this is equal

to
σ = (a1, ak)(a1, ak−1)(a1, ak−2) . . . (a1, a2).

It suffices to check that they have the same effect on every integer j
between 1 and n. Now if j is not equal to any of the ai, there is nothing
to check as both sides fix j. Suppose that j = ai. Then σ(j) = ai+1.
On the other hand the the transposition (a1, ai) sends j to a1 and the
next transposition then send a1 to ai+1. No other of the remaining
transpositions have any effect on ai+1. The the RHS also sends j = ai
to ai+1. As both sides have the same effect on j, they are equal. This
completes the first proof.

To see how the second proof goes, think of a permutation as just be-
ing a rearrangement of the n numbers (like a deck of cards). If we can
find a product of transpositions, that sends this rearrangement back to
the trivial one, then we have shown that the inverse of the correspond-
ing permutation is a product of transpositions. Since a transposition
is its own inverse, it follows that the original permutation is a product
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of transpositions (in fact the same product, but in the opposite order).
In other words if

τk . . . τ3 · τ2 · τ1 · σ = e,

then multiplying on the right by τi, in the opposite order, we get

σ = τ1 · τ2 · τ3 · . . . τk.
The idea is to put back the cards into the correct position, one at

a time. Suppose that the first i − 1 cards are in the correct position.
Suppose that the ith card is in position j. As the first i− 1 cards are
in the correct position, j ≥ i. We may assume that j > i, otherwise
there is nothing to do. Now look at the transposition (i, j). This puts
the ith card into the correct position. Thus we are done by induction
on i. �
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