11. Conjugation in S_{n}

One thing that is very easy to understand in terms of S_{n} is conjugation.

Definition 11.1. Let g and h be two elements of a group G.
The element $g h g^{-1}$ is called the conjugate of h by g.
One reason why conjugation is so important is because it measures how far the group G is from being abelian.

Indeed if G were abelian, then

$$
g h=h g .
$$

Multiplying by g^{-1} on the right, we would have

$$
h=g h g^{-1} .
$$

Thus G is abelian if and only if the conjugate of every element by any other element is the same element.

Another reason why conjugation is so important is that really conjugation is the same as translation.

Lemma 11.2. Let σ and τ be two elements of S_{n}. Suppose that $\sigma=$ $\left(a_{1}, a_{2}, \ldots, a_{k}\right)\left(b_{1}, b_{2}, \ldots, b_{l}\right) \ldots$ is the cycle decomposition of σ.

Then $\left(\tau\left(a_{1}\right), \tau\left(a_{2}\right), \ldots, \tau\left(a_{k}\right)\right)\left(\tau\left(b_{1}\right), \tau\left(b_{2}\right), \ldots, \tau\left(b_{l}\right)\right) \ldots$ is the cycle decomposition of $\tau \sigma \tau^{-1}$, the conjugate of σ by τ.

Proof. Since both sides of the equation

$$
\tau \sigma \tau^{-1}=\left(\tau\left(a_{1}\right), \tau\left(a_{2}\right), \ldots, \tau\left(a_{k}\right)\right)\left(\tau\left(b_{1}\right), \tau\left(b_{2}\right), \ldots, \tau\left(b_{l}\right)\right) \ldots
$$

are permutations, it suffices to check that both sides have the same effect on any integer j from 1 to n. As τ is surjective, $j=\tau(i)$ for some i. By symmetry, we may as well assume that $j=\tau\left(a_{1}\right)$. Then $\sigma\left(a_{1}\right)=a_{2}$ and the right hand side maps $\tau\left(a_{1}\right)$ to $\tau\left(a_{2}\right)$. But

$$
\begin{aligned}
\tau \sigma \tau^{-1}\left(\tau\left(a_{1}\right)\right) & =\tau \sigma\left(a_{1}\right) \\
& =\tau\left(a_{2}\right)
\end{aligned}
$$

Thus the LHS and RHS have the same effect on j and so they must be equal.

In other words, to find compute the conjugate of σ by τ, just translate the elements of the cycle decomposition of $\sigma . \tau$ is the dictionary and σ is the phrase we want to translate, using the dictionary given by τ.

For example suppose

$$
\sigma=(3,7,4,2)(1,6,5)
$$

in S_{8} and τ is

$$
\left(\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
3 & 2 & 5 & 1 & 8 & 7 & 6 & 4
\end{array}\right) .
$$

Then the conjugate of σ by τ is

$$
\tau \sigma \tau^{-1}=(5,6,1,2)(3,7,8)
$$

Now given any group G, conjugation defines an equivalence relation on G.

Definition-Lemma 11.3. Let G be a group. We say that two elements a and b are conjugate, if there is a third element $g \in G$ such that

$$
b=g a g^{-1} .
$$

The corresponding relation, \sim, is an equivalence relation.
Proof. We have to prove that \sim is reflexive, symmetric and transitive.
Suppose that $a \in G$. Then $e a e^{-1}=a$ so that $a \sim a$. Thus \sim is reflexive.

Suppose that $a \in G$ and $b \in G$ and that $a \sim b$, that is, a is conjugate to b.

By definition this means that there is an element $g \in G$ such that $g a g^{-1}=b$. But then $a=g^{-1} b g=h b h^{-1}$, where $h=g^{-1}$. Thus $b \sim a$ and \sim is reflexive.

Finally suppose that $a \sim b$ and $b \sim c$. Then there are elements g and h of G such that $b=g a g^{-1}$ and $c=h b h^{-1}$. Then

$$
\begin{aligned}
c & =h b h^{-1} \\
& =h\left(g a g^{-1}\right) h^{-1} \\
& =(h g) a(h g)^{-1}=k a k^{-1},
\end{aligned}
$$

where $k=g h$. But then $a \sim c$ and \sim is transitive.
But then \sim is an equivalence relation.
Definition 11.4. The equivalence classes of the equivalence relation above are called conjugacy classes.

Given an aribtrary group G, it can be quite hard to determine the conjugacy classes of G. Here is the most that can be said in general.

Lemma 11.5. Let G be a group. Then the conjugacy classes all have exactly one element if and only if G is abelian.
Proof. Easy exercise.
Proposition 11.6. The equivalence classes of the symmetric group S_{n} are precisely given by cycle type. That is, two permutations σ and σ^{\prime} are conjugate if and only if they have the same cycle type.

Proof. Suppose that σ and σ^{\prime} are conjugate. Then by (11.2) σ and σ^{\prime} have the same cycle type.

Now suppose that σ and σ^{\prime} have the same cycle type. We want to find a permutation τ that sends σ to σ^{\prime}. By assumption the cycles in σ and σ^{\prime} have the same lengths. Then we can pick a correspondence between the cycles of σ and the cycles of σ^{\prime}. Pick an integer j. Then j belongs to a cycle of σ. Look at the corresponding cycle in σ^{\prime} and look at the corresponding entry, call it j^{\prime}. Then τ should send j to j^{\prime}.

It is easy to check that then $\tau \sigma \tau^{-1}=\sigma^{\prime}$.

