13. Homomorphisms and kernels

It is somewhat suprising that one can relax the condition that ϕ is a bijection in the definition of an isomorphism and come up with a very interesting property:

Definition 13.1. $A \operatorname{map} \phi: G \longrightarrow H$ between two groups is a homorphism if for every g and h in G,

$$
\phi(g h)=\phi(g) \phi(h) .
$$

Here is an interesting example of a homomorphism. Define a map

$$
\phi: G \longrightarrow H
$$

where $G=\mathbb{Z}$ and H is a subgroup of order two, say $\mathbb{Z} / 2 \mathbb{Z}$, by the rule

$$
\phi(x)= \begin{cases}0 & \text { if } x \text { is even } \\ 1 & \text { if } x \text { is odd }\end{cases}
$$

We check that ϕ is a homomorphism. Suppose that x and y are two integers. There are four cases. x and y are even, x is even, y is odd, x is odd, y is even, and x and y are both odd.

Now if x and y are both even or both odd, then $x+y$ is even. In this case $\phi(x+y)=0$. In the first case $\phi(x)+\phi(y)=0+0=0$ and in the second case $\phi(x)+\phi(y)=1+1=0$.

Otherwise one is even and the other is odd and $x+y$ is odd. In this case $\phi(x+y)=1$ and $\phi(x)+\phi(y)=1+0=1$. Thus we get a homomorphism.

Here are some elementary properties of homomorphisms.
Lemma 13.2. Let $\phi: G \longrightarrow H$ be a homomorphism.
(1) $\phi(e)=f$, that is, ϕ maps the identity in G to the identity in H.
(2) $\phi\left(a^{-1}\right)=\phi(a)^{-1}$, that is, ϕ maps inverses to inverses.
(3) If K is subgroup of G then $\phi(K)$ is a subgroup of H.

Proof. Let $a=\phi(e)$, where e is the identity in G. Then

$$
\begin{aligned}
a & =\phi(e) \\
& =\phi(e e) \\
& =\phi(e) \phi(e) \\
& =a a .
\end{aligned}
$$

Thus $a^{2}=a$. Cancelling we get $a=f$, the identity in H. Hence (1).

Let $b=a^{-1}$.

$$
\begin{aligned}
\phi(e) & =\phi(a b) \\
& =\phi(a) \phi(b) .
\end{aligned}
$$

But then $\phi(b)$ is the inverse of $\phi(a)$, so that $\phi\left(a^{-1}\right)=\phi(a)^{-1}$. Hence (2).

Let $X=\phi(K)$. It suffices to check that X is non-empty and closed under products and inverses. X contains f the identity of H, by (1). X is closed under inverses by (2) and closed under products, almost by definition. Thus X is a subgroup.

Instead of looking at the image, it turns out to be much more interesting to look at the inverse image of the identity.

Definition-Lemma 13.3. Let $\phi: G \longrightarrow H$ be a group homomorphism. The kernel of ϕ, denoted $\operatorname{Ker} \phi$, is the inverse image of the identity.

Then $\operatorname{Ker} \phi$ is a subgroup of G.
Proof. We have to show that the kernel is non-empty and closed under products and inverses.

Note that $\phi(e)=f$ by (13.2). Thus $\operatorname{Ker} \phi$ is certainly non-empty. Now suppose that a and b are in the kernel, so that $\phi(a)=\phi(b)=f$.

$$
\begin{aligned}
\phi(a b) & =\phi(a) \phi(b) \\
& =f f=f .
\end{aligned}
$$

So the kernel is closed under products.
Finally suppose that $\phi(a)=f$. Then $\phi\left(a^{-1}\right)=\phi(a)^{-1}=f$, where we used (13.2). Thus the kernel is closed under inverses, and so the kernel is a subgroup.

Here are some basic results about the kernel.
Lemma 13.4. Let $\phi: G \longrightarrow H$ be a homomrphism.
Then f is injective if and only if $\operatorname{Ker} \phi=\{e\}$.
Proof. If f is injective, then at most one element can be sent to the identity $f \in H$. Since $\phi(e)=f$, it follows that $\operatorname{Ker} \phi=\{e\}$.

Now suppose that $\operatorname{Ker} \phi=\{e\}$ and suppose that $\phi(x)=\phi(y)$. Let $g=x^{-1} y$. Then $\phi(g)=\phi\left(x^{-1} y\right)=\phi(x)^{-1} \phi(y)=f$. Thus g is in the kernel of ϕ and so $g=e$. But then $x^{-1} y=e$ and so $x=y$.

It turns out that the kernel of a homomorphism enjoys a much more important property than just being a subgroup.

Definition 13.5. Let G be a group and let H be a subgroup of G.
We say that H is normal in G and write $H \triangleleft G$, if for every $g \in G$, $g H^{-1} \subset H$.

In other words H is normal in G if and only if it is a union of conjugacy classes.

Lemma 13.6. Let $\phi: G \longrightarrow H$ be a homomorphism.
Then the kernel of ϕ is a normal subgroup of G.
Proof. We have already seen that the kernel is a subgroup. Suppose that $g \in G$. We want to prove that

$$
g(\operatorname{Ker} \phi) g^{-1} \subset \operatorname{Ker} \phi .
$$

Suppose that $h \in \operatorname{Ker} \phi$. We need to prove that $g h g^{-1} \in \operatorname{Ker} \phi$. Now

$$
\begin{aligned}
\phi\left(g h g^{-1}\right) & =\phi(g) \phi(h) \phi(g)^{-1} \\
& =\phi(g) f \phi(g)^{-1} \\
& =\phi(g) \phi(g)^{-1}=f .
\end{aligned}
$$

Thus $g h g^{-1} \in \operatorname{Ker} \phi$.
It is interesting to look at some examples of subgroups, to see which are normal and which are not.

Lemma 13.7. Let G be an abelian group and let H be any subgroup. Then H is normal in G.

Proof. Clear, as for every $h \in H$ and $g \in G$,

$$
g h g^{-1}=g g^{-1} h=h \in H .
$$

So let us look at the first interesting example of a group which is not abelian.

Take $G=D_{3}$. Let us first look at $H=\left\{I, R, R^{2}\right\}$. Then H is normal in G. In fact, pick $g \in D_{3}$. If g belongs to H, there is nothing to prove. Otherwise g is a flip. Let us suppose that it is F_{1}. Now pick $h \in H$ and consider $g h g^{-1}$. If $h=I$ then it is clear that $g h g^{-1}=I \in H$.

So suppose that $h=R$. Then

$$
\begin{aligned}
g h g^{-1} & =F_{1} R F_{1} \\
& =R^{2} \in H .
\end{aligned}
$$

Similarly, if $h=R^{2}$, then $g h g^{-1}=R \in H$.
Thus H is normal in G.

Now suppose that $H=\left\{I, F_{1}\right\}$. Take $h=F_{1}$ and $g=R$. Then

$$
\begin{aligned}
g h g^{-1} & =R F_{1} R^{2} \\
& =F_{2} .
\end{aligned}
$$

So $g h g^{-1} \neq H$.
In fact, all of this is much easier to see with S_{3}. In the first case we are looking at $H=\{e,(1,2,3),(1,3,2)\}$. In this case H is in fact a union of conjugacy classes. (Recall that the conjugacy classes of S_{n} are entirely determined by the cycle type). So H is obviously normal. Now take $H=\{e,(1,2)\}$, and let $g=(2,3)$. Then

$$
\begin{aligned}
g H g^{-1} & =\left\{g e g^{-1}, g(1,2) g^{-1}\right\} \\
& =\{e,(1,3)\}
\end{aligned}
$$

Thus H is not normal in this case.
Lemma 13.8. Let H be a subgroup of a group G.
TFAE
(1) H is normal in G.
(2) For every $g \in G, g H g^{-1}=H$.
(3) $H a=a H$, for every $a \in G$.
(4) The set of left cosets is equal to the set of right cosets.
(5) H is a union of conjugacy classes.

Proof. Suppose that (1) holds. Suppose that $g \in G$. Then

$$
g H g^{-1} \subset H .
$$

Now replace g with k, then

$$
k H k^{-1} \subset H
$$

for all $k \in G$. Now take $k=g^{-1}$. Then

$$
g^{-1} H g \subset H,
$$

so that

$$
H \subset g H g^{-1}
$$

But then (2) holds.
If (2) holds, then (3) holds, simply by multiplying the equality

$$
a H a^{-1}=H
$$

on the right by a.
If (3) holds, then (4) certainly holds.
Suppose that (4) holds. Let $g \in G$. Then $g \in g H$ and $g \in H g$. If the set of left cosets is equal to the set of right cosets, then this means
$g H=H g$. Now take this equality and multiply it on the right by g^{-1}. Then certainly $g H^{-1} \subset H$, so that H is normal in G. Hence (1).

Thus (1), (2), (3) and (4) are all equivalent.
Suppose that (5) holds. Then $H=\cup A_{i}$, where A_{i} are conjugacy classes. Then

$$
\begin{aligned}
g H g^{-1} & =\bigcup g A_{i} g^{-1} \\
& =\bigcup A_{i} \\
& =H .
\end{aligned}
$$

Thus H is normal.
Finally suppose that (2) holds. Suppose that $a \in H$ and that A is the conjugacy class to which a belongs. Pick $b \in A$. Then there is an element $g \in G$ such that $g a g^{-1}=b$. Then $b \in g H g^{-1}=H$. So $A \subset H$. But then H is a union of conjugacy classes.

Given this, we can give one more interesting example of a normal subgroup.

Let $G=S_{4}$. Then let $H=\{e,(1,2)(3,4),(1,3)(2,4),(1,4)(2,3)\}$. We have already seen that H is a subgroup of G. On the other hand, H is a union of conjugacy classes. Indeed the three non-trivial elements of H represent the only permutations with cycle type $(2,2)$. Thus H is normal in G.

