13. Homomorphisms and kernels

It is somewhat suprising that one can relax the condition that ϕ is a bijection in the definition of an isomorphism and come up with a very interesting property:

Definition 13.1. A map $\phi: G \longrightarrow H$ between two groups is a **homorphism** if for every g and h in G,

$$\phi(gh) = \phi(g)\phi(h).$$

Here is an interesting example of a homomorphism. Define a map

$$\phi \colon G \longrightarrow H$$

where $G = \mathbb{Z}$ and H is a subgroup of order two, say $\mathbb{Z}/2\mathbb{Z}$, by the rule

$$\phi(x) = \begin{cases} 0 & \text{if } x \text{ is even} \\ 1 & \text{if } x \text{ is odd.} \end{cases}$$

We check that ϕ is a homomorphism. Suppose that x and y are two integers. There are four cases. x and y are even, x is even, y is odd, x is odd, y is even, and x and y are both odd.

Now if x and y are both even or both odd, then x + y is even. In this case $\phi(x+y) = 0$. In the first case $\phi(x) + \phi(y) = 0 + 0 = 0$ and in the second case $\phi(x) + \phi(y) = 1 + 1 = 0$.

Otherwise one is even and the other is odd and x + y is odd. In this case $\phi(x + y) = 1$ and $\phi(x) + \phi(y) = 1 + 0 = 1$. Thus we get a homomorphism.

Here are some elementary properties of homomorphisms.

Lemma 13.2. Let $\phi: G \longrightarrow H$ be a homomorphism.

- (1) $\phi(e) = f$, that is, ϕ maps the identity in G to the identity in H.
- (2) $\phi(a^{-1}) = \phi(a)^{-1}$, that is, ϕ maps inverses to inverses.
- (3) If K is subgroup of G then $\phi(K)$ is a subgroup of H.

Proof. Let $a = \phi(e)$, where e is the identity in G. Then

$$a = \phi(e)$$

= $\phi(ee)$
= $\phi(e)\phi(e)$
= $aa.$

Thus $a^2 = a$. Cancelling we get a = f, the identity in *H*. Hence (1).

Let $b = a^{-1}$.

$$\phi(e) = \phi(ab)$$
$$= \phi(a)\phi(b).$$

But then $\phi(b)$ is the inverse of $\phi(a)$, so that $\phi(a^{-1}) = \phi(a)^{-1}$. Hence (2).

Let $X = \phi(K)$. It suffices to check that X is non-empty and closed under products and inverses. X contains f the identity of H, by (1). X is closed under inverses by (2) and closed under products, almost by definition. Thus X is a subgroup.

Instead of looking at the image, it turns out to be much more interesting to look at the inverse image of the identity.

Definition-Lemma 13.3. Let $\phi: G \longrightarrow H$ be a group homomorphism. The **kernel of** ϕ , denoted Ker ϕ , is the inverse image of the identity. Then Ker ϕ is a subgroup of G.

Proof. We have to show that the kernel is non-empty and closed under products and inverses.

Note that $\phi(e) = f$ by (13.2). Thus Ker ϕ is certainly non-empty. Now suppose that a and b are in the kernel, so that $\phi(a) = \phi(b) = f$.

$$\phi(ab) = \phi(a)\phi(b)$$
$$= ff = f.$$

So the kernel is closed under products.

Finally suppose that $\phi(a) = f$. Then $\phi(a^{-1}) = \phi(a)^{-1} = f$, where we used (13.2). Thus the kernel is closed under inverses, and so the kernel is a subgroup.

Here are some basic results about the kernel.

Lemma 13.4. Let $\phi: G \longrightarrow H$ be a homomorphism. Then f is injective if and only if Ker $\phi = \{e\}$.

Proof. If f is injective, then at most one element can be sent to the identity $f \in H$. Since $\phi(e) = f$, it follows that $\operatorname{Ker} \phi = \{e\}$.

Now suppose that Ker $\phi = \{e\}$ and suppose that $\phi(x) = \phi(y)$. Let $g = x^{-1}y$. Then $\phi(g) = \phi(x^{-1}y) = \phi(x)^{-1}\phi(y) = f$. Thus g is in the kernel of ϕ and so g = e. But then $x^{-1}y = e$ and so x = y.

It turns out that the kernel of a homomorphism enjoys a much more important property than just being a subgroup. **Definition 13.5.** Let G be a group and let H be a subgroup of G. We say that H is **normal** in G and write $H \triangleleft G$, if for every $g \in G$, $gHg^{-1} \subset H$.

In other words H is normal in G if and only if it is a union of conjugacy classes.

Lemma 13.6. Let $\phi: G \longrightarrow H$ be a homomorphism. Then the kernel of ϕ is a normal subgroup of G.

Proof. We have already seen that the kernel is a subgroup. Suppose that $g \in G$. We want to prove that

$$g(\operatorname{Ker}\phi)g^{-1} \subset \operatorname{Ker}\phi.$$

Suppose that $h \in \operatorname{Ker} \phi$. We need to prove that $ghg^{-1} \in \operatorname{Ker} \phi$. Now

$$\phi(ghg^{-1}) = \phi(g)\phi(h)\phi(g)^{-1}$$
$$= \phi(g)f\phi(g)^{-1}$$
$$= \phi(g)\phi(g)^{-1} = f.$$

Thus $ghg^{-1} \in \operatorname{Ker} \phi$.

It is interesting to look at some examples of subgroups, to see which are normal and which are not.

Lemma 13.7. Let G be an abelian group and let H be any subgroup. Then H is normal in G.

Proof. Clear, as for every $h \in H$ and $g \in G$,

$$ghg^{-1} = gg^{-1}h = h \in H.$$

So let us look at the first interesting example of a group which is not abelian.

Take $G = D_3$. Let us first look at $H = \{I, R, R^2\}$. Then H is normal in G. In fact, pick $g \in D_3$. If g belongs to H, there is nothing to prove. Otherwise g is a flip. Let us suppose that it is F_1 . Now pick $h \in H$ and consider ghg^{-1} . If h = I then it is clear that $ghg^{-1} = I \in H$.

So suppose that h = R. Then

$$ghg^{-1} = F_1 R F_1$$
$$= R^2 \in H$$

Similarly, if $h = R^2$, then $ghg^{-1} = R \in H$. Thus H is normal in G. Now suppose that $H = \{I, F_1\}$. Take $h = F_1$ and g = R. Then

$$ghg^{-1} = RF_1R^2$$
$$= F_2.$$

So $ghg^{-1} \neq H$.

In fact, all of this is much easier to see with S_3 . In the first case we are looking at $H = \{e, (1, 2, 3), (1, 3, 2)\}$. In this case H is in fact a union of conjugacy classes. (Recall that the conjugacy classes of S_n are entirely determined by the cycle type). So H is obviously normal. Now take $H = \{e, (1, 2)\}$, and let g = (2, 3). Then

$$gHg^{-1} = \{geg^{-1}, g(1,2)g^{-1}\} \\ = \{e, (1,3)\}.$$

Thus H is not normal in this case.

Lemma 13.8. Let H be a subgroup of a group G. TFAE

- (1) H is normal in G.
- (2) For every $g \in G$, $gHg^{-1} = H$.
- (3) Ha = aH, for every $a \in G$.
- (4) The set of left cosets is equal to the set of right cosets.
- (5) H is a union of conjugacy classes.

Proof. Suppose that (1) holds. Suppose that $g \in G$. Then

$$gHg^{-1} \subset H.$$

Now replace q with k, then

$$kHk^{-1} \subset H,$$

for all $k \in G$. Now take $k = g^{-1}$. Then

$$g^{-1}Hg \subset H,$$

so that

$$H \subset gHg^{-1}.$$

But then (2) holds.

If (2) holds, then (3) holds, simply by multiplying the equality

$$aHa^{-1} = H,$$

on the right by a.

If (3) holds, then (4) certainly holds.

Suppose that (4) holds. Let $g \in G$. Then $g \in gH$ and $g \in Hg$. If the set of left cosets is equal to the set of right cosets, then this means gH = Hg. Now take this equality and multiply it on the right by g^{-1} . Then certainly $gHg^{-1} \subset H$, so that H is normal in G. Hence (1).

Thus (1), (2), (3) and (4) are all equivalent.

Suppose that (5) holds. Then $H = \bigcup A_i$, where A_i are conjugacy classes. Then

$$gHg^{-1} = \bigcup gA_ig^{-1}$$
$$= \bigcup A_i$$
$$= H.$$

Thus H is normal.

Finally suppose that (2) holds. Suppose that $a \in H$ and that A is the conjugacy class to which a belongs. Pick $b \in A$. Then there is an element $g \in G$ such that $gag^{-1} = b$. Then $b \in gHg^{-1} = H$. So $A \subset H$. But then H is a union of conjugacy classes.

Given this, we can give one more interesting example of a normal subgroup.

Let $G = S_4$. Then let $H = \{e, (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)\}$. We have already seen that H is a subgroup of G. On the other hand, H is a union of conjugacy classes. Indeed the three non-trivial elements of H represent the only permutations with cycle type (2, 2). Thus His normal in G.