
14. Quotient Groups

Given a group G and a subgroup H, under what circumstances can
we find a homomorphism φ : G −→ G′, such that H is the kernel of φ?

Clearly a necessary condition is that H is normal in G. Somewhat
surprisingly this trivially necessary condition is also in fact sufficient.

The idea is as follows. Given G and H there is an obvious map of
sets, where H is the inverse image of a point. We just put X to be the
collection of left cosets of H in G. Then there is an obvious function

φ : G −→ X.

The map φ just does the obvious thing, it sends g to φ(g) = [g] = gH,
the left coset corresponding to g. The real question is, can we make X
into a group?

Suppose that we are given two left cosets [a] = aH and [b] = bH.
The obvious way to try to define a multiplication in X is to set

(aH)(bH) = [a][b] = [ab] = (ab)H.

Unfortunately there is a problem with this attempt to define a multi-
plication. The problem is that the multiplication map is not necessarily
well-defined.

To give an illustrative example of the problems that arise defining
maps on equivalences classes by choosing representatives, consider the
following example. Let Y be the set of all people and let ∼ be the
equivalence relation such that x ∼ y if and only if x and y have the
same colour hair. Then the equivalence classes are simply all possible
colours of people’s hair. Consider trying to define a function,

f : Y/ ∼−→ R,

on the equivalences classes to the real numbers. Given a colour, pick
a person with that colour eyes, and send that colour to height of that
person. This is clearly absurd. Given any colour, there are lots of peo-
ple with that colour eyes, and nearly everyone’s height will be different,
so we don’t get a well-defined function this way.

In fact the problem is that we might represent a left-coset in a com-
pletely different way. Suppose that a′H = aH and b′H = bH, so that
[a′] = [a] and [b′] = [b]. Then we would also have another way to define
the multiplication, that is

(a′H)(b′H) = [a′][b′] = [a′b′] = (a′b′)H.

For the multiplication to be well-defined, we need

[a′b′] = [ab].
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In other words we need that a′b′ ∈ abH. Now we do know that a′ = ah
and b′ = bk for h and k ∈ H. It follows then that

a′b′ = (ah)(bk).

We want to manipulate the right hand side, until it is of the form
abh′ where h′ ∈ H. Now in general it is absolutely guaranteed that
this is going to fail. The point is, if this method did work, then there
would be a homomorphism whose kernel is equal to H. So, at the very
least, we had better assume that H is normal in G.

Now we would like to move the b through the h. As H is normal in
G, we have

bH = Hb.

In particular

hb ∈ Hb = bH,

so that we may find l ∈ H such that hb = bl. It follows that

a′b′ = (ah)(bk)

= a(hb)k

= a(bl)k

= (ab)(lk)

= (ab)h′,

where h′ = lk ∈ H.
Thus, almost by a miracle, if H is normal in G, then the set of left

cosets of H in G becomes a group.

Theorem 14.1. Let G be a group and let H be a normal subgroup.
Then the left cosets of H in G form a group, denoted G/H. G/H

is called the quotient of G modulo H. The rule of multiplication in
G/H is defined as

(aH)(bH) = abH.

Furthermore there is a natural surjective homomorphism

φ : G −→ G/H,

defined as φ(g) = gH. Moreover the kernel of φ is H.

Proof. We have already checked that this rule of multiplication is well-
defined.
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We check the three axioms for a group. We first check associativity.
Suppose that a, b and c are in G. Then

(aH)(bHcH) = (aH)(bcH)

= (a(bc))H

= ((ab)c)H

= (aHbH)cH.

Thus this rule of multiplication is associative.
It is easy to see that eH = H plays the role of the identity. Indeed

aHeH = aeH = aH = eHaH.
Finally given a left coset aH, a−1H is easily seen to be the inverse

of aH.
Thus G/H certainly does form a group.
It is easy to see that φ is a surjective homomorphism. Finally the

inverse image of the identity is equal to all those elements g of G such
that gH = H. Almost by definition of an equivalence relation, it follows
that g ∈ H, so that Kerφ = H. �
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