16. Characteristic subgroups and Products

Recall that a subgroup is normal if it is invariant under conjugation. Now conjugation is just a special case of an automorphism of G.

Definition 16.1. Let G be a group and let H be a subgroup. We say that H is a characteristic subgroup of G, if for every automorphism ϕ of $G, \phi(H)=H$.

It turns out that most of the general normal subgroups that we have defined so far are all in fact characteristic subgroups.
Lemma 16.2. Let G be a group and let $Z=Z(G)$ be the centre.
Then Z is characteristically normal.
Proof. Let ϕ be an automorphism of G. We have to show $\phi(Z)=Z$. Pick $z \in Z$. Then z commutes with every element of G. Pick an element x of G. As ϕ is a bijection, $x=\phi(y)$, for some $y \in G$.

We have

$$
\begin{aligned}
x \phi(z) & =\phi(y) \phi(z) \\
& =\phi(y z) \\
& =\phi(z y) \\
& =\phi(z) \phi(y) \\
& =\phi(z) x .
\end{aligned}
$$

As x is arbitrary, it follows that $\phi(z)$ commutes with every element of G. But then $\phi(z) \in Z$. Thus $\phi(Z) \subset Z$. Applying the same result to the inverse ψ of ϕ we get $\phi^{-1}(Z)=\psi(Z) \subset Z$. But then $Z \subset \phi(Z)$, so that $Z=\phi(Z)$.
Definition 16.3. Let G be a group and let x and y be two elements of $G . x^{-1} y^{-1} x y$ is called the commutator of x and y.

The commutator subgroup of G is the group generated by all of the commutators.

Lemma 16.4. Let G be a group and let H be the commutator subgroup.
Then H is characteristically normal in G and the quotient group G / H is abelian. Moreover this quotient is universal amongst all abelian quotients in the following sense.

Suppose that $\phi: G \longrightarrow G^{\prime}$ is any homomorphism of groups, where G^{\prime} is abelian. Then there is a unique homomorphism $G / H \longrightarrow G^{\prime}$.

Proof. Suppose that ϕ is an automorphism of G and let x and y be two elements of G. Then

$$
\phi\left(x^{-1} y^{-1} x y\right)=\underset{1}{\phi(x)^{-1}} \phi(y)^{-1} \phi(x) \phi(y) .
$$

The last expression is clearly the commutator of $\phi(x)$ and $\phi(y)$. Thus $\phi(H) \subset H$. Let ψ be the inverse of ϕ. Then $\psi(H) \subset H$ so that $H \subset \phi(H)$. Thus $\phi(H)=H$. Thus H is characteristically normal in G.

Suppose that $a H$ and $b H$ are two left cosets. Then

$$
\begin{aligned}
(b H)(a H) & =b a H \\
& =b a\left(a^{-1} b^{-1} a b\right) H \\
& =a b H=(a H)(b H) .
\end{aligned}
$$

Thus G / H is abelian. Suppose that $\phi: G \longrightarrow G^{\prime}$ is a homomorphism, and that G^{\prime} is abelian. By the universal property of a quotient, it suffices to prove that the kernel of ϕ must contain H.

Since H is generated by the commutators, it suffices to prove that any commutator must lie in the kernel of ϕ. Suppose that x and y are in G.

Then $\phi(x) \phi(y)=\phi(y) \phi(x)$. It follows that

$$
\phi(x)^{-1} \phi(y)^{-1} \phi(x) \phi(y)=\phi\left(x^{-1} y^{-1} x y\right)
$$

is the identity in G^{\prime}. Thus $x^{-1} y^{-1} x y$ is sent to the identity, that is, the commutator of x and y lies in the kernel of ϕ.

Definition-Lemma 16.5. Let G and H be any two groups.
The product of G and H, denoted $G \times H$, is the group, whose elements are the ordinary elements of the cartesian product of G and H as sets, with multiplication defined as

$$
\left(g_{1}, h_{1}\right)\left(g_{2}, h_{2}\right)=\left(g_{1} g_{2}, h_{1} h_{2}\right)
$$

Proof. We need to check that with this law of multiplication, $G \times H$ becomes a group. This is left as an exercise for the reader.

Definition 16.6. Let \mathcal{C} be a category and let X and Y be two objects of \mathcal{C}. The categorical product of X and Y, denoted $X \times Y$, is an object together with two morphisms $p: X \times Y \longrightarrow X$ and $q: X \times Y \longrightarrow Y$ that are universal amongst all such morphisms, in the following sense.

Suppose that there are morphisms $f: Z \longrightarrow X$ and $g: Z \longrightarrow Y$. Then there is a unique morphism $Z \longrightarrow X \times Y$ which makes the following diagram commute,

Note that, by the universal property of a categorical product, in any category, the product is unique, up to unique isomorphism. The proof proceeds exactly as in the proof of the uniqueness of a categorical quotient and is left as an exercise for the reader.
Lemma 16.7. The product of groups is a categorical product.
That is, given two groups G and H, the group $G \times H$ defined in (16.5) satisfies the universal property of (16.6).

Proof. First of all note that the two ordinary projection maps $p: G \times$ $H \longrightarrow G$ and $q: G \times H \longrightarrow H$ are both homomorphisms (easy exercise left for the reader).

Suppose that we are given a group K and two homomorphisms $f: K \longrightarrow G$ and $g: K \longrightarrow H$. We define a map $u: K \longrightarrow G \times H$ by sending k to $(f(k), g(k))$.

It is left as an exercise for the reader to prove that this map is a homomorphism and that it is the only such map, for which the diagram commutes.

