18. Generators and Relations

Definition-Lemma 18.1. Let A be a set. A word in A is any string of elements of A and their inverses. We say that the word w' is obtained from w by a reduction, if we can get from w to w' by repeatedly applying the following rule,

• replace either aa^{-1} or $a^{-1}a$ by the empty string.

Given any word w, the **reduced word** w' associated to w is any word obtained from w by reduction, such that w' cannot be reduced any further.

Given two words w_1 and w_2 of A, the **concatenation** of w_1 and w_2 is the word $w = w_1w_2$. The empty word is denoted e.

The set of all reduced words is denoted F_A . With product defined as the reduced concatenation, this set becomes a group, called the **free** group with generators A.

It is interesting to look at examples. Suppose that A contains one element a. Then any element of $F_A = F_a$, is equal to a string $w = aaaa^{-1}a^{-1}aaa$ etc. Given any such word, we pass to the reduction w' of w. This means cancelling as much as we can, and replacing strings of a's by the corresponding power. Thus

$$w = aaa^{-1}aaa$$
$$= aaaa$$
$$= a^4 = w',$$

where equality means up to reduction. Thus the free group on one generator is isomorphic to \mathbb{Z} .

The free group on two generators is much more complicated and it is not abelian. A typical reduced word might be

$$a^3b^{-2}a^5b^{13}$$
.

Clearly $F_{a,b}$ has quite a few elements. Free groups have a very useful universal property.

Lemma 18.2. Let $F = F_S$ be a free group with generators S. Let G be any group. Suppose that we are given a function $f: S \longrightarrow G$. Then there is a unique homomorphism

$$\phi\colon F \longrightarrow G$$

that extends f. In other words, the following diagram commutes

Proof. Given a reduced word w in F, send this to the element given by replacing every letter by its image in G. It is easy to see that this is a homomorphism, as there are no relations between the elements of F.

In other words if $S = \{a, b\}$ and you send a to g and b to h then you have no choice but to send $w = a^2b^{-3}a$ to $g^2h^{-3}g$, whatever that element is in G.

This gives us a convenient way to present a group G. Pick generators S of G. Then we get a homomorphism

$$\phi\colon F_S\longrightarrow G.$$

As S generates G, ϕ is surjective. Let the kernel be H. By the First Isomorphism Theorem, G is isomorphic to F_S/H . To describe H, we need to write down generators R for H. These generators are called relations, since they describe relations amongs the generators, such that if we mod out by these relations, then we get G.

Definition 18.3. A presentation of a group G is a choice of generators S of G and a description of the relations R amongst these generators.

It is probably easiest to give some examples.

Let G be a cyclic group of order n. Pick a generator a. Then we get a homomorphism

$$\phi\colon F_a\longrightarrow G.$$

The kernel of ϕ is equal to H, which contains all elements of the form a^m , where m is a multiple of n, $H = \langle a^n \rangle$. Thus a presentation for G is given by the single generator a with the single relation $a^n = e$.

Take the group D_4 , the symmetries of the square. This has two natural generators g and f, where g is rotation through $2\pi/4 = \pi/2$ and f is reflection about a diagonal.

Thus we get a map

$$F_{a,b} \longrightarrow D_4$$

given by sending a to g and b to f. What are the relations, that is, what is the kernel? Well $f^2 = e$ and $g^4 = e$, so two obvious relations

are f^2 and g^4 . On the other hand

$$fgf^{-1} = g^{-1}$$
.

Using this relation, any word w can be manipulated into the form

$$f^ig^j$$
,

where $i \in \{0,1\}$ and $j \in \{0,1,2,3\}$. Since this gives eight elements of the quotient and there are eight elements of G, it follows that the kernel is generated by

$$f^2, g^4, fgf^{-1}g.$$

There are many ways to present the symmetric group S_n . One way is to take the transpositions

$$\tau_i = (i, i+1)$$
 where $1 \le i \le n-1$.

The relations are then

$$\tau_i^2 = e, \qquad (\tau_i \tau_{i+1})^3 = e \qquad \text{and} \qquad (\tau_i \tau_j)^2 = e,$$

where |i - j| > 1.

Definition 18.4. Let S be a set. The free abelian group A_S generated by S is the quotient of F_S , the free group generated by S, and the relations R given by the commutators of the elements of S.

Let $S = \{a, b\}$. Then $A_{a,b}$ is isomorphic to $\mathbb{Z} \times \mathbb{Z}$. Similarly for any finite set:

Lemma 18.5. The free abelian group on n generators is isomorphic to the product of n copies of \mathbb{Z} .

Proof. We do the case n=2. There are two maps $f_i: \{a,b\} \longrightarrow \mathbb{Z}$. The first sends a to 1 and b to 0 and the second sends a to 0 and b to 1. By the universal property of the free group $F_{a,b}$ there are two group homomorphisms $\phi_i: F_{a,b} \longrightarrow \mathbb{Z}$.

Since \mathbb{Z} is abelian we get two group homomorphism $\psi_i \colon A_{a,b} \longrightarrow \mathbb{Z}$, by the universal property of the commutator subgroup.

Finally by the universal property of the product there is a group homomorphism $\psi \colon A_{a,b} \longrightarrow \mathbb{Z} \times \mathbb{Z}$. We have $\psi(a) = (1,0)$ and $\psi(b) = (0,1)$. The image of ψ is the whole of $\mathbb{Z} \times \mathbb{Z}$ as (1,0) and (0,1) are generators of $\mathbb{Z} \times \mathbb{Z}$.

The elements of $A_{a,b}$ are of the form a^mb^n . It is clear that the kernel is trivial so that ψ is an isomorphism.

Lemma 18.6. Let S be any set and let G be any abelian group. Given any map $f: S \longrightarrow G$ there is a unique homomorphism

$$A_S \longrightarrow G$$
.

Proof. As F_S is a free group, there is a unique homomorphism

$$\phi\colon F_S\longrightarrow G.$$

As G is abelian the kernel of ϕ contains the commutator subgroup. But then, as A_S is by definition the quotient of F_S by the commutator subgroup, there is a unique map $A_S \longrightarrow G$ extending f.

In the proof of (18.5) we could have deduced the existence of the group homomorphisms ψ_i directly from f_i using the universal property of $A_{a,b}$.

Lemma 18.7. Let G be any finitely generated abelian group. Then G is a quotient of $\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} \times \cdots \times \mathbb{Z}$.

Proof. Pick a finite set of generators S of G. By (18.6) there is a unique homomorphism

$$A_S \longrightarrow G$$
.

As S generates G this map is surjective. On the other hand A_S is isomorphic to a product of copies of \mathbb{Z} .

Theorem 18.8. Let G be a finitely generated abelian group.

Then G is isomorphic to $\mathbb{Z} \times \mathbb{Z} \times \cdots \times \mathbb{Z} \times T$, where T may be presented uniquely as either,

- (1) $\mathbb{Z}_{q_1} \times \mathbb{Z}_{q_2} \times \cdots \times \mathbb{Z}_{q_r}$, where each q_i is a power of a prime, or
- (2) $\mathbb{Z}_{m_1} \times \mathbb{Z}_{m_2} \times \cdots \times \mathbb{Z}_{m_r}$, where $m_i | m_{i+1}$.

Given this, we can classify all abelian groups of a fixed finite order. For example, take $n = 60 = 2^2 \cdot 3 \cdot 5$. Then we have

$$\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_3 \times \mathbb{Z}_5$$
 or $\mathbb{Z}_4 \times \mathbb{Z}_3 \times \mathbb{Z}_5$,

using the first representation, or

$$\mathbb{Z}_2 \times \mathbb{Z}_{30}$$
 or \mathbb{Z}_{60}

using the second representation.

Finally let me mention that in general if one is given generators and relations, it can be very hard to describe the resulting quotient.

Theorem 18.9. There is no effective algorithm to solve any of the following problems,

Given relations R, decide if

- (1) two words w_1 and w_2 are equivalent, modulo the relations.
- (2) a word w is equivalent, modulo the relations, to the identity.

Succintly, the method of representing groups by generators and relations is an art not a science.