
19. Automorphism group of Sn

Definition-Lemma 19.1. Let G be a group.
The automorphism group of G, denoted Aut(G), is the subgroup

of A(Sn) of all automorphisms of G.

Proof. We check that Aut(G) is closed under products and inverses.
Suppose that φ and ψ ∈ Aut(G). Let ξ = φ◦ψ. If g and h ∈ G then

ξ(gh) = (φ ◦ ψ)(gh)

= φ(ψ(gh))

= φ(ψ(g)ψ(h))

= φ(ψ(g))φ(ψ(h))

= (φ ◦ ψ)(g)(φ ◦ ψ)(h)

= ξ(g)ξ(h).

Thus ξ = φ◦ψ is a group homomorphism. Thus Aut(G) is closed under
products.

Now let ξ = φ−1. If g and h ∈ G then we can find g′ and h′ such
that g = φ(g′) and h = φ(h′). It follows that

ξ(gh) = ξ(φ(g′)φ(h′))

= ξ(φ(g′h′))

= g′h′

= ξ(g)ξ(h).

Thus ξ = φ−1 is a group homomorphism. Thus Aut(G) is closed under
inverses. �

Lemma 19.2. Let G be a group and let a ∈ G. φa is the automorphism
of G given by conjugation by a, φ(g) = aga−1.

If a and b ∈ G then

φab = φaφb.

Proof. Both sides are functions from G to G. We just need to check
that they have the same effect on any element g of G:

(φa ◦ φb)(g) = φa(φb(g))

= φa(bgb
−1)

= a(bgb−1)a−1

= (ab)g(ab)−1

= φab(g). �
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Definition-Lemma 19.3. We say that an automorphism φ of G is
inner if φ = φa for some a. The inner automorphism group of
G, denoted Inn(G), is the subgroup of Aut(G) given by inner automor-
phisms.

Proof. We check that Inn(G) is closed under products and inverses.
We checked that Inn(G) is closed under products in (19.2). Suppose

that a ∈ G. We check that the inverse of φa is φa−1 . We have

φaφa−1 = φaa−1

= φe,

which is clearly the identity function. Thus Inn(G) is closed under
inverses. �

Definition-Lemma 19.4. Let G be a group.
Then the inner automorphism group is a normal subgroup of A(G).

The quotient group Aut(G)/ Inn(G) is called the outer automor-
phism group of G, denoted Out(G).

Proof. Let f be a permutation of G and let φa be an inner automor-
phism. Let b = f(a). We check fφaf

−1 = φb. Since both sides are
functions from G to G we just need to check they have the same effect
on every element g of G. Suppose that g = f(h). We have

(fφaf
−1)(g) = (fφaf

−1)(f(h))

= fφa(h)

= f(aha−1)

= f(a)f(h)f(a−1)

= bgb−1

= φb(g). �

Lemma 19.5. Let G be a group with centre Z.
Then Inn(G) ' G/Z.

Proof. Define a function

A : G −→ Inn(G) by sending a −→ φa.

A is a group homomorphism by (19.2). A is clearly surjective. We
identify the kernel. a ∈ KerA if and only if φa is the identity if and
only if φa(g) = g for all g ∈ G if and only if aga−1 = g for all g ∈ G if
and only if ag = ga for all g ∈ G if and only if a ∈ Z.

Now apply the first Isomorphism Theorem. �

Theorem 19.6. Aut(Sn) = Inn(Sn) ' Sn unless
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(1) n = 2 when Aut(Sn) = Inn(Sn) = {e}.
(2) n = 6 when Inn(Sn) = Sn and Out(Sn) = Z2.

Observe that (19.6) says that most automorphisms of Sn are inner.
We first compute the centre of Sn:

Lemma 19.7. The centre of Sn is Sn unless n = 2.

Proof. We may assume that n ≥ 3. Suppose that σ ∈ Sn is not the
identity. Pick i such that j = σ(i) 6= i. Pick k /∈ {i, j} and let
τ = (j, k). Then τστ−1 sends i to k. Thus

τστ−1 6= σ,

so that σ does not belong to the centre. �

Note that an inner automorphism of Sn preserves cycle type. We
show the converse is true.

Lemma 19.8. Suppose that G is a group and S is a set of generators
of G.

If φ1 and φ2 are two automorphisms of G that agree on S then φ1 =
φ2.

Proof. Let H be the largest subset of G on which φ1 and φ2 agree.
We show that H is a subgroup of G. e ∈ H and so H is non-empty.
Suppose that g and h belong to H. We have

φ1(gh) = φ1(g)φ1(h)

= φ2(g)φ2(h)

= φ2(gh).

Thus gh ∈ H. Thus H is closed under products.
Suppose that g ∈ H. We have

φ1(g
−1) = φ1(g)−1

= φ2(g)−1

= φ2(g
−1).

Thus g−1 ∈ H and so H is closed under inverses. Thus H is a subgroup
of G.

As H contains S, H = G, and so φ1 = φ2. �

Lemma 19.9. If φ ∈ Aut(Sn) sends transpositions to transpositions
then φ is inner.
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Proof. The transpositions (i, i+1), 1 ≤ i ≤ n−1 generate Sn. Suppose
that (α, β) = φ(i, i+1) and (γ, δ) = φ(i+1, i+2). Possibly rearranging
we may assume that β = δ. Thus we may assume that there are
a1, a2, . . . , an such that (ai, ai+1) = φ(i, i+ 1). Let τ(i) = ai. Then τ is
a permutation of the first n natural numbers and φ and φτ agree on the
generators (i, i+ 1). (19.8) implies that φ = φτ so that φ is inner. �

Lemma 19.10. Let C ⊂ Sn be a conjugacy class with
(
n
2

)
elements of

order 2.
Then either C consists of transpositions or n = 6 and C consists of

the product of three disjoint transpositions.

Proof. The only perumutations of order two are the product of k dis-
joint transpositions. In this case the cycle type is 1n−2k2k. Conjugacy
in Sn is determined by cycle type. The number of permutations with
cycle type 2k is

1

k!

(
n

2

)(
n− 2

2

)
. . .

(
n+ 2− 2k

2

)
.

For this to equal
(
n
2

)
we must have

1

(k − 1)!

(
n− 2

2

)
. . .

(
n+ 2− 2k

2

)
= k.

Note that the LHS counts the number of permutations with cycle type
1n−2k2k−1.

If k = 1 then both sides are equal to one. So suppose k ≥ 2. The
number of permutations in Sn−2 which are the product of k−1 disjoint
transpositions is at least the number of ways to pair 2(k − 1) objects.
As k > 1, this is at least the number of ways to pair the first element
with any other element, which is n− 2− 1 = n− 3. So we must have
n− 3 ≤ k, that is, n ≤ k + 3.

As 2k ≤ n we must have k ≤ 3. In this case n ≤ 6. If k = 3 then
n = 6 and we get equality. If k = 2 then 4 ≤ n ≤ 5. If n = 4 the LHS
is 1, not 2, and if n = 5 the LHS is 3, not 2. �

If we put everything we have done together it remains to show that
if n = 6 then the outer automorphism is non-trivial.

Lemma 19.11. The order of Out(S6) is at most two.
Further the order is two if and only if there is an automorphism φ

of S6 which sends a transposition to a product of three disjoint trans-
positions.
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Proof. We have already seen that an automorphism is inner if it fixes
the subset of all transpositions. By (19.10) if we don’t send a trans-
position to a transposition then we must send it to product of three
disjoint transpositions. �

It is actually suprisingly involved to write down an automorphism
φ which sends a transposition to a product of three disjoint trans-
positions. The problem is that there are too many choices. Outer
automorphisms are really equivalence classes, left cosets of the inner
automorphism group. Writing down an explicit automorphism which
is not inner is somehow completely the opposite to what we have have
done so far, there don’t seem to be any natural choices.

In our case there are 6! = 720 inner automorphisms and so φ belongs
to a left coset with 720 elements. We start by figuring out how φ acts
on the other conjugacy classes. It is useful to write down a table of
conjugacy classes, the order of a typical element and their sizes:

Type Order Size
e 1 1

(1, 2) 2 15
(1, 2)(3, 4) 2 45

(1, 2)(3, 4)(5, 6) 2 15
(1, 2, 3) 3 40

(1, 2, 3)(4, 5, 6) 3 40
(1, 2, 3, 4) 4 90

(1, 2, 3, 4)(5, 6) 4 90
(1, 2, 3, 4, 5) 5 144

(1, 2, 3, 4, 5, 6) 6 120
(1, 2)(3, 4, 5) 6 120

As a check, the sum of the numbers in the last column is 720 = 6! the
order of Sn.

Note that all of these conjugacy classes come in pairs C1 and C2,
where the order of the elements of C1 and C2 are the same and the
cardinality of C1 and C2 is the same, with three exceptions. Presum-
ably an outer automorphism switches C1 and C2. (1, 2) is paired with
(1, 2)(3, 4)(5, 6); (1, 2, 3) is paired with (1, 2, 3)(4, 5, 6); (1, 2, 3, 4) is
paired with (1, 2, 3, 4)(5, 6); (1, 2, 3, 4, 5, 6) is paired with (1, 2, 3)(4, 5).
The classes represented by e, (1, 2)(3, 4) and (1, 2, 3, 4, 5) are paired
with themselves. This suggests that 5-cycles play a special role.

The construction of an outer automorphism is quite involved; the
interested reader might look online for all of the details. The idea is to
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find an injective group homomorphism π : S5 −→ S6 which is different
from the obvious inclusion.

Take the complete graph with 5 vertices and colour the ten edges red
and blue so that there is one red 5-cycle and one blue 5-cycle. After a
little bit of drawing pictures, it is not hard to see there are six ways to
do this. Permuting the five vertices permutes the six ways to colour.
This defines π.

Note that the kernel of π is one of the following normal subgroups:
{e}, A5 and S5. It is not hard to check that (1, 2, 3) ∈ A5 is not in the
kernel so that the kernel is {e} and so π is injective. It is also not hard
to see that the transposition (1, 2) is sent to a product of three disjoint
transpositions.

Let H be the image of S5. Then H is a subgroup of S6 of index
6 = 6!/5!. S6 acts on the left cosets of H in S6 and this defines a
homomorphism φ : S6 −→ S6. Again the kernel is one of three possible
normal subgroups {e}, A6 or S6. It is again easy to see the kernel of
φ is {e}. It follows that φ is injective, so that φ is a bijection. Once
again, it is not hard to check that the image of a transposition is not
a transposition, so that φ corresponds to an outer automorphism.
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