FIRST MIDTERM
MATH 100A, UCSD, AUTUMN 16

You have 50 minutes.

There are 5 problems, and the total number of points is 65. Show all your work. Please make your work as clear and easy to follow as possible.

Name:______________________________
Signature:__________________________

<table>
<thead>
<tr>
<th>Problem</th>
<th>Points</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>65</td>
<td></td>
</tr>
</tbody>
</table>
1. (15pts) Give the definition of a group.

A group is a set G together with a binary operation \ast such that
(1) \ast is associative. That is, for all a, b and $c \in G$
$$a \ast (b \ast c) = (a \ast b) \ast c.$$
(2) There is an element $e \in G$, called the identity, with the following property. For all $a \in G$,
$$e \ast a = a \ast e = a.$$
(3) Every element $a \in G$ has an inverse b, which satisfies the following property.
$$a \ast b = b \ast a = e.$$

(ii) Let G be a group and let S be a subset of G. Give the definition of the subgroup generated by S.

$\langle S \rangle$ is the smallest subgroup of G that contains S.

(iii) Let G be a group and H a subgroup. Give the definition of a left coset.

Let $a \in G$. The left coset of a is
$$aH = \{ ah \mid h \in H \}.$$
2. (15pts) (i) Give a description of the group D_3 of symmetries of a triangle.

Let I be the identity, R rotation through 120° and let F_1, F_2, F_3 be the three flips. Then $G = \{I, R, R^2, F_1, F_2, F_3\}$.

(ii) List all subgroups of D_3.

$\{e\}$, $\{I, F_i\}$, $i = 1, 2, 3$, $\{I, R, R^2\}$, and finally the whole of G.

(iii) Find the left cosets, for one subgroup of order two and one subgroup of order three.

Take $H = \{I, F_1\}$. Then there are three left cosets,

$[I] = H = \{I, F_1\} = [F_1]$
$[F_2] = F_2H = \{F_2, R\} = [R]$
$[F_3] = F_3H = \{F_3, R^2\} = [R^2]$

Take $H = \{I, R, R^2\}$. Then there are two left cosets,

$[I] = H = \{I, R, R^2\} = [R] = [R^2]$
$[F_1] = F_2H = \{F_1, F_2, F_3\} = [F_2] = [F_3]$.
3. (10pts) Let \(G \) be a group and let \(H \) be a subgroup. Define a relation \(\sim \) by the rule \(a \sim b \) if and only if \(a^{-1}b \in H \). Prove that \(\sim \) is an equivalence relation. What are the equivalence classes?

We have to check three things. First we check reflexivity. Suppose that \(a \in G \). Then \(a^{-1}a = e \). As \(H \) is a subgroup, it certainly contains \(e \) and \(a \sim a \). Thus reflexivity holds.

Now we check symmetry. Suppose that \(a, b \in G \) and that \(a \sim b \). Then \(h = a^{-1}b \in H \). As \(H \) is a subgroup, it contains \(h^{-1} = b^{-1}a \). But then \(b \sim a \). Thus symmetry holds.

Now we check transitivity. Suppose that \(a, b, c \in G \) and that \(a \sim b \), \(b \sim c \). Then \(h = a^{-1}b \in H \) and \(k = b^{-1}c \in H \). As \(H \) is a subgroup, it contains the product \(hk = (a^{-1}b)(b^{-1}c) = a^{-1}c \). But then \(c \sim a \). Thus transitivity holds.

The equivalence classes are precisely the left cosets.
4. (10pts) If G is a group and $g \in G$ is an element of G show that the centraliser C_g is a subgroup of G.

$eg = ge$ so that $e \in C_g$ and the centraliser is non-empty. Therefore it suffices to prove that C_g is closed under multiplication and taking inverses. Suppose that h and k are two elements of C_g. We show that the product hk is an element of C_g. We have to prove that $(hk)g = g(hk)$.

\[
(hk)g = h(kg) \quad \text{by associativity} \\
= h(gk) \quad \text{as } k \in C_g \\
= (hg)k \quad \text{by associativity} \\
= (gh)k \quad \text{as } h \in C_g \\
= g(hk) \quad \text{by associativity}.
\]

Thus $hk \in C_g$ and C_g is closed under multiplication. Now suppose that $h \in G$. We show that the inverse of h is in G. We have to show that $h^{-1}g = gh^{-1}$. Suppose we start with the equality $hg = gh$.

Multiply both sides by h^{-1} on the left. We get $h^{-1}(hg) = h^{-1}(gh)$, so that simplifying we get $g = (h^{-1}g)h$.

Now multiply both sides of this equality by h^{-1} on the right, $gh^{-1} = (h^{-1}g)(hh^{-1})$. Simplifying we get $h^{-1}g = gh^{-1}$ which is what we want. Thus $h^{-1} \in C_g$. Thus C_g is closed under taking inverses and so C_g is a subgroup.
5. (15pts) (i) Carefully state (but do not prove) Lagrange’s Theorem.

Let G be a group and let H be a subgroup. Then

$$|G| = |H||[G : H]|,$$

where $[G : H]$ counts the number of left cosets. In particular if G is finite, then the order of H divides the order of G.

(ii) Show that if G is a group of order a prime p, then G does not contain any proper subgroups.

Let H be a subgroup of G. Then $|H|$ divides $|G| = p$. As p is prime, this means that $|H| = 1$ or p. If the order of H is 1, then $H = \{e\}$ and if the order of H is p, then $H = G$. Thus G has no proper subgroups.
6. (10pts) Prove Lagrange’s Theorem.

Let \(G \) be a group and let \(H \) be a subgroup. Then

\[
|G| = |H|[G : H].
\]

Since the left cosets of \(H \) partition \(G \) into a disjoint union of subsets, and the number of left cosets is precisely equal to \([G : H]\), it is enough to prove that each left coset has the same cardinality as \(H \).

Let \(a \in G \). Define a map

\[
f : H \rightarrow aH
\]

by setting \(f(h) = ah \). We want to show that \(f \) is bijection. The easiest way to proceed is to find the inverse \(g \) of \(f \). Define a map

\[
g : aH \rightarrow G
\]

by setting \(g(k) = a^{-1}k \). It is clear that the composition, either way, is equal to the identity, as \(a^{-1}a = aa^{-1} = e \). But then \(f \) is a bijection and \(H \) and \(gH \) have the same cardinality.
7. (10pts) Give an example of a countable group that is not finitely generated (that is a group which is not generated by any finite subset). There are two natural examples.

The first is to look at the rational numbers under addition. \(\mathbb{Q} \) is certainly countable. Suppose that \(g_1, g_2, \ldots, g_k \) were a finite set of generators. Each \(g_i \) is a rational number, say of the form \(\frac{a_i}{b_i} \). Now let \(b \) be the least common multiple of the \(b_1, b_2, \ldots, b_k \). Then any element which is a finite sum or difference of the \(g_1, g_2, \ldots, g_k \) will be of the form \(\frac{a}{b} \), for some integer \(a \). But most rationals are not of this form. Thus \(\mathbb{Q} \) is not finitely generated.

For point of reference, here is an example from latter on in the class:

The second is to look at the group \(A(\mathbb{N}) \) of permutations of the natural numbers. Now this is not countable, but consider the subgroup \(G \) consisting of all permutations that fix all but finitely many natural numbers. Note that \(A(\mathbb{N}) \) contains a nested sequence of copies of \(S_n \), for all \(n \), in an obvious way and that \(G \) is in fact the union of these finite subgroups.

In particular \(G \) is countable, as it is the countable union of countable sets. Now suppose that \(g_1, g_2, \ldots, g_k \) were a finite set of generators. Then in fact there is some \(n \) such that \(g_i \in S_n \), for all \(i \). As \(S_n \) is a subgroup of \(G \), it follows that

\[
\langle g_1, g_2, \ldots, g_k \rangle \subset S_n \neq G,
\]

a contradiction. Put differently, no finite subset generates \(G \), since any finite subset will only permute finitely many natural numbers.