FIRST MIDTERM MATH 100A, UCSD, AUTUMN 16

You have 50 minutes.

There are 5 problems, and the total number of points is 65 . Show all your work. Please make your work as clear and easy to follow as possible.
$\overline{\text { " }}$
Name: \qquad
Signature: \qquad

Problem	Points	Score
1	15	
2	15	
3	10	
4	10	
5	15	
6	10	
7	10	
Total	65	

1. (15pts) Give the definition of a group.

A group is a set G together with a binary operation $*$ such that
(1) $*$ is associative. That is, for all a, b and $c \in G$

$$
a *(b * c)=(a * b) * c
$$

(2) There is an element $e \in G$, called the identity, with the following property. For all $a \in G$,

$$
e * a=a * e=a .
$$

(3) Every element $a \in G$ has an inverse b, which satisfies the following property.

$$
a * b=b * a=e .
$$

(ii) Let G be a group and let S be a subset of G. Give the definition of the subgroup generated by S.
$\langle S\rangle$ is the smallest subgroup of G that contains S.
(iii) Let G be a group and H a subgroup. Give the definition of a left coset.

Let $a \in G$. The left coset of a is

$$
a H=\{a h \mid h \in H\}
$$

2. (15pts) (i) Give a description of the group D_{3} of symmetries of a triangle.

Let I be the identity, R rotation through 120° and let F_{1}, F_{2}, F_{3} be the three flips. Then $G=\left\{I, R, R^{2}, F_{1}, F_{2}, F_{3}\right\}$.
(ii) List all subgroups of D_{3}.
$\{e\},\left\{I, F_{i}\right\}, i=1,2,3,\left\{I, R, R^{2}\right\}$, and finally the whole of G.
(iii) Find the left cosets, for one subgroup of order two and one subgroup of order three.

Take $H=\left\{I, F_{1}\right\}$. Then there are three left cosets,

$$
\begin{aligned}
{[I]=H } & =\left\{I, F_{1}\right\}=\left[F_{1}\right] \\
{\left[F_{2}\right]=F_{2} H } & =\left\{F_{2}, R\right\}=[R] \\
{\left[F_{3}\right]=F_{3} H } & =\left\{F_{3}, R^{2}\right\}=\left[R^{2}\right]
\end{aligned}
$$

Take $H=\left\{I, R, R^{2}\right\}$. Then there are two left cosets,

$$
\begin{aligned}
{[I]=H } & =\left\{I, R, R^{2}\right\}=[R]=\left[R^{2}\right] \\
{\left[F_{1}\right]=F_{2} H } & =\left\{F_{1}, F_{2}, F_{3}\right\}=\left[F_{2}\right]=\left[F_{3}\right] .
\end{aligned}
$$

3. (10pts) Let G be a group and let H be a subgroup. Define a relation
\sim by the rule $a \sim b$ if and only if $a^{-1} b \in H$. Prove that \sim is an equivalence relation. What are the equivalence classes?

We have to check three things. First we check reflexivity. Suppose that $a \in G$. Then $a^{-1} a=e$. As H is a subgroup, it certainly contains e and $a \sim a$. Thus reflexivity holds.
Now we check symmetry. Suppose that $a, b \in G$ and that $a \sim b$. Then $h=a^{-1} b \in H$. As H is a subgroup, it contains $h^{-1}=b^{-1} a$. But then $b \sim a$. Thus symmetry holds.
Now we check transitivity. Suppose that $a, b, c \in G$ and that $a \sim b$, $b \sim c$. Then $h=a^{-1} b \in H$ and $k=b^{-1} c \in H$. As H is a subgroup, it contains the product $h k=\left(a^{-1} b\right)\left(b^{-1} c\right)=a^{-1} c$. But then $c \sim a$. Thus transitivity holds.
The equivalence classes are precisely the left cosets.
4. (10pts) If G is a group and $g \in G$ is an element of G show that the centraliser C_{g} is a subgroup of G.
$e g=g e$ so that $e \in C_{g}$ and the centraliser is non-empty.
Therefore it suffices to prove that C_{g} is closed under multiplication and taking inverses.
Suppose that h and k are two elements of C_{g}. We show that the product $h k$ is an element of C_{g}. We have to prove that $(h k) g=g(h k)$.

$$
\begin{aligned}
(h k) g & =h(k g) & & \text { by associativity } \\
& =h(g k) & & \text { as } k \in C_{g} \\
& =(h g) k & & \text { by associativity } \\
& =(g h) k & & \text { as } h \in C_{g} \\
& =g(h k) & & \text { by associativity. }
\end{aligned}
$$

Thus $h k \in C_{g}$ and C_{g} is closed under multiplication.
Now suppose that $h \in G$. We show that the inverse of h is in G. We have to show that $h^{-1} g=g h^{-1}$. Suppose we start with the equality

$$
h g=g h
$$

Multiply both sides by h^{-1} on the left. We get

$$
h^{-1}(h g)=h^{-1}(g h)
$$

so that simplifying we get

$$
g=\left(h^{-1} g\right) h
$$

Now multiply both sides of this equality by h^{-1} on the right,

$$
g h^{-1}=\left(h^{-1} g\right)\left(h h^{-1}\right)
$$

Simplifying we get

$$
h^{-1} g=g h^{-1}
$$

which is what we want. Thus $h^{-1} \in C_{g}$. Thus C_{g} is closed under taking inverses and so C_{g} is a subgroup.
5. (15pts) (i) Carefully state (but do not prove) Lagrange's Theorem.

Let G be a group and let H be a subgroup. Then

$$
|G|=|H|[G: H],
$$

where $[G: H]$ counts the number of left cosets. In particular if G is finite, then the order of H divides the order of G.
(ii) Show that if G is a group of order a prime p, then G does not contain any proper subgroups.

Let H be a subgroup of G. Then $|H|$ divides $|G|=p$. As p is prime, this means that $|H|=1$ or p. If the order of H is 1 , then $H=\{e\}$ and if the order of H is p, then $H=G$. Thus G has no proper subgroups.

Bonus Challenge Problems

6. (10pts) Prove Lagrange's Theorem.

Let G be a group and let H be a subgroup. Then

$$
|G|=|H|[G: H] .
$$

Since the left cosets of H partition G into a disjoint union of subsets, and the number of left cosets is precisely equal to $[G: H]$, it is enough to prove that each left coset has the same cardinality as H.
Let $a \in G$. Define a map

$$
f: H \longrightarrow a H
$$

by setting $f(h)=a h$. We want to show that f is bijection. The easiest way to proceed is to find the inverse g of f. Define a map

$$
g: a H \longrightarrow G
$$

by setting $f(k)=a^{-1} k$. It is clear that the composition, either way, is equal to the identity, as $a^{-1} a=a a^{-1}=e$. But then f is a bijection and H and $g H$ have the same cardinality.
7. (10pts) Give an example of a countable group that is not finitely generated (that is a group which is not generated by any finite subset). There are two natural examples.
The first is to look at the rational numbers under addition. \mathbb{Q} is certainly countable. Suppose that $g_{1}, g_{2}, \ldots, g_{k}$ were a finite set of generators. Each g_{i} is a rational number, say of the form $\frac{a_{i}}{b_{i}}$. Now let b be the least common multiple of the $b_{1}, b_{2}, \ldots, b_{k}$. Then any element which is a finite sum or difference of the $g_{1}, g_{2}, \ldots, g_{k}$ will be of the form $\frac{a}{b}$, for some integer a. But most rationals are not of this form. Thus \mathbb{Q} is not finitely generated.
For point of reference, here is an example from latter on in the class: The second is to look at the group $A(\mathbb{N})$ of permutations of the natural numbers. Now this is not countable, but consider the subgroup G consisting of all permutations that fix all but finitely many natural numbers. Note that $A(\mathbb{N})$ contains a nested sequence of copies of S_{n}, for all n, in an obvious way and that G is in fact the union of these finite subgroups.
In particular G is countable, as it is the countable union of countable sets. Now suppose that $g_{1}, g_{2}, \ldots, g_{k}$ were a finite set of generators. Then in fact there is some n such that $g_{i} \in S_{n}$, for all i. As S_{n} is a subgroup of G, it follows that

$$
\left\langle g_{1}, g_{2}, \ldots, g_{k}\right\rangle \subset S_{n} \neq G
$$

a contradiction. Put differently, no finite subset generates G, since any finite subset will only permute finitely many natural numbers.

