FIRST MIDTERM MATH 100A, UCSD, AUTUMN 16

You have 50 minutes.

There are 5 problems, and the total number of points is 65. Show all your work. *Please make your work as clear and easy to follow as possible.*

Name:_____

Signature:_____

Problem	Points	Score
1	15	
2	15	
3	10	
4	10	
5	15	
6	10	
7	10	
Total	65	

1. (15pts) Give the definition of a group.

A group is a set G together with a binary operation * such that

(1) * is associative. That is, for all a, b and $c \in G$

$$a \ast (b \ast c) = (a \ast b) \ast c.$$

(2) There is an element $e \in G$, called the identity, with the following property. For all $a \in G$,

$$e * a = a * e = a.$$

(3) Every element $a \in G$ has an inverse b, which satisfies the following property.

$$a * b = b * a = e.$$

(ii) Let G be a group and let S be a subset of G. Give the definition of the subgroup generated by S.

 $\langle S \rangle$ is the smallest subgroup of G that contains S.

(iii) Let G be a group and H a subgroup. Give the definition of a left coset.

Let $a \in G$. The left coset of a is $aH = \{ ah \mid h \in H \}$ 2. (15pts) (i) Give a description of the group D_3 of symmetries of a triangle.

Let I be the identity, R rotation through 120° and let F_1 , F_2 , F_3 be the three flips. Then $G = \{I, R, R^2, F_1, F_2, F_3\}$.

(ii) List all subgroups of D_3 .

 $\{e\}, \{I, F_i\}, i = 1, 2, 3, \{I, R, R^2\}, and finally the whole of G.$

(iii) Find the left cosets, for one subgroup of order two and one subgroup of order three.

Take $H = \{I, F_1\}$. Then there are three left cosets,

$$[I] = H = \{I, F_1\} = [F_1]$$
$$[F_2] = F_2 H = \{F_2, R\} = [R]$$
$$[F_3] = F_3 H = \{F_3, R^2\} = [R^2]$$

Take $H = \{I, R, R^2\}$. Then there are two left cosets, $[I] = H = \{I, R, R^2\} = [R] = [R^2]$ $[F_1] = F_2 H = \{F_1, F_2, F_3\} = [F_2] = [F_3].$ 3. (10pts) Let G be a group and let H be a subgroup. Define a relation \sim by the rule $a \sim b$ if and only if $a^{-1}b \in H$. Prove that \sim is an equivalence relation. What are the equivalence classes?

We have to check three things. First we check reflexivity. Suppose that $a \in G$. Then $a^{-1}a = e$. As H is a subgroup, it certainly contains e and $a \sim a$. Thus reflexivity holds.

Now we check symmetry. Suppose that $a, b \in G$ and that $a \sim b$. Then $h = a^{-1}b \in H$. As H is a subgroup, it contains $h^{-1} = b^{-1}a$. But then $b \sim a$. Thus symmetry holds.

Now we check transitivity. Suppose that $a, b, c \in G$ and that $a \sim b$, $b \sim c$. Then $h = a^{-1}b \in H$ and $k = b^{-1}c \in H$. As H is a subgroup, it contains the product $hk = (a^{-1}b)(b^{-1}c) = a^{-1}c$. But then $c \sim a$. Thus transitivity holds.

The equivalence classes are precisely the left cosets.

4. (10pts) If G is a group and $g \in G$ is an element of G show that the centraliser C_q is a subgroup of G.

eg = ge so that $e \in C_g$ and the centraliser is non-empty.

Therefore it suffices to prove that C_g is closed under multiplication and taking inverses.

Suppose that h and k are two elements of C_g . We show that the product hk is an element of C_g . We have to prove that (hk)g = g(hk).

(hk)g = h(kg)	by associativity
=h(gk)	as $k \in C_g$
=(hg)k	by associativity
= (gh)k	as $h \in C_g$
=g(hk)	by associativity.

Thus $hk \in C_g$ and C_g is closed under multiplication.

Now suppose that $h \in G$. We show that the inverse of h is in G. We have to show that $h^{-1}g = gh^{-1}$. Suppose we start with the equality

$$hg = gh$$

Multiply both sides by h^{-1} on the left. We get

$$h^{-1}(hg) = h^{-1}(gh),$$

so that simplifying we get

$$g = (h^{-1}g)h.$$

Now multiply both sides of this equality by h^{-1} on the right,

$$gh^{-1} = (h^{-1}g)(hh^{-1}).$$

Simplifying we get

$$h^{-1}g = gh^{-1}$$

which is what we want. Thus $h^{-1} \in C_g$. Thus C_g is closed under taking inverses and so C_g is a subgroup.

5. (15pts) (i) Carefully state (but do not prove) Lagrange's Theorem.

Let G be a group and let H be a subgroup. Then

|G| = |H|[G:H],

where [G : H] counts the number of left cosets. In particular if G is finite, then the order of H divides the order of G.

(ii) Show that if G is a group of order a prime p, then G does not contain any proper subgroups.

Let *H* be a subgroup of *G*. Then |H| divides |G| = p. As *p* is prime, this means that |H| = 1 or *p*. If the order of *H* is 1, then $H = \{e\}$ and if the order of *H* is *p*, then H = G. Thus *G* has no proper subgroups.

Bonus Challenge Problems

6. (10pts) Prove Lagrange's Theorem. Let G be a group and let H be a subgroup. Then

$$|G| = |H|[G:H].$$

Since the left cosets of H partition G into a disjoint union of subsets, and the number of left cosets is precisely equal to [G:H], it is enough to prove that each left coset has the same cardinality as H. Let $a \in G$. Define a map

$$f: H \longrightarrow aH$$

by setting f(h) = ah. We want to show that f is bijection. The easiest way to proceed is to find the inverse g of f. Define a map

$$g: aH \longrightarrow G$$

by setting $f(k) = a^{-1}k$. It is clear that the composition, either way, is equal to the identity, as $a^{-1}a = aa^{-1} = e$. But then f is a bijection and H and gH have the same cardinality.

7. (10pts) Give an example of a countable group that is not finitely generated (that is a group which is not generated by any finite subset). There are two natural examples.

The first is to look at the rational numbers under addition. \mathbb{Q} is certainly countable. Suppose that g_1, g_2, \ldots, g_k were a finite set of generators. Each g_i is a rational number, say of the form $\frac{a_i}{b_i}$. Now let b be the least common multiple of the b_1, b_2, \ldots, b_k . Then any element which is a finite sum or difference of the g_1, g_2, \ldots, g_k will be of the form $\frac{a}{b}$, for some integer a. But most rationals are not of this form. Thus \mathbb{Q} is not finitely generated.

For point of reference, here is an example from latter on in the class:

The second is to look at the group $A(\mathbb{N})$ of permutations of the natural numbers. Now this is not countable, but consider the subgroup Gconsisting of all permutations that fix all but finitely many natural numbers. Note that $A(\mathbb{N})$ contains a nested sequence of copies of S_n , for all n, in an obvious way and that G is in fact the union of these finite subgroups.

In particular G is countable, as it is the countable union of countable sets. Now suppose that g_1, g_2, \ldots, g_k were a finite set of generators. Then in fact there is some n such that $g_i \in S_n$, for all i. As S_n is a subgroup of G, it follows that

$$\langle g_1, g_2, \ldots, g_k \rangle \subset S_n \neq G,$$

a contradiction. Put differently, no finite subset generates G, since any finite subset will only permute finitely many natural numbers.