SECOND MIDTERM
 MATH 100A, UCSD, AUTUMN 16

You have 50 minutes.
There are 4 problems, and the total number of points is 60 . Show all your work. Please make your work as clear and easy to follow as possible.
$\overline{\underline{ }}$
Name: \qquad
Signature: \qquad

Problem	Points	Score
1	15	
2	15	
3	10	
4	20	
5	10	
6	10	
Total	60	

1. (15pts) Give the definition of conjugation.

The conjugate of h by g is $g h g^{-1}$.
(ii) Give the definition of an isomorphism.

A function $\phi: G \longrightarrow H$ between two groups is an isomorphism if ϕ is a bijection and $\phi(x y)=\phi(x) \phi(y)$ for all x and $y \in G$.
(iii) The kernel of a group homomorphism.

If $\phi: G \longrightarrow H$ is a group homomorphism the kernel of ϕ is the inverse image of the identity.
2. $(15 \mathrm{pts})$
(i) Find the cycle decomposition of the following element of S_{9},

$$
\left(\begin{array}{lllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
4 & 3 & 5 & 7 & 1 & 2 & 6 & 9 & 8
\end{array}\right) .
$$

$$
(1,4,7,6,2,3,5)(8,9)
$$

(ii) Compute the conjugate of σ by τ, where $\sigma=(1,5,6)(4,3,7,2)$ and $\tau=(1,5)(6,3,2)$.

$$
(5,1,3)(4,2,7,6)
$$

(iii) Is it possible to conjugate σ to σ^{\prime}, where $\sigma=(1,5,4)(2,3)$ and $\sigma^{\prime}=(1,5)(3,4,2)$? If so, find an element τ so that σ^{\prime} is the conjugate of σ by τ. Otherwise explain why it is impossible.

Yes it is possible, as both have the same cycle type.

$$
\tau=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
3 & 1 & 5 & 2 & 4
\end{array}\right)
$$

will do the trick.
3. (10pts) Let G be a group and let Z be its centre. Prove that if G / Z is cyclic, then G is abelian.

Suppose that G / Z is generated by $a Z$. Then the elements of G / Z are of the form $a^{i} Z$, for $i \in \mathbb{Z}$.
Suppose that x and $y \in G$. Then $x Z$ and $y Z$ are two left cosets, so that $x Z=a^{i} Z$ and $y Z=a^{j} Z$, for some i and j. It follows that we may find z_{1} and $z_{2} \in Z$ so that $x=a^{i} z_{1}$ and $y=a^{j} z_{2}$.
We have

$$
\begin{aligned}
x y & =\left(a^{i} z_{1}\right)\left(a^{j} z_{2}\right) \\
& =a^{i}\left(z_{1} a^{j}\right) z_{2} \\
& =a^{i}\left(a^{j} z_{1}\right) z_{2} \\
& =a^{i} a^{j}\left(z_{1} z_{2}\right) \\
& =a^{i+j}\left(z_{1} z_{2}\right) .
\end{aligned}
$$

Similarly $y x=a^{j+i} z_{2} z_{1}=a^{i+j} z_{1} z_{2}=x y$. Thus G is abelian.
4. (20pts) (i) Let $a \in G$. Prove that the map

$$
\sigma=\sigma_{a}: G \longrightarrow G \quad \text { given as } \quad \sigma(g)=a g a^{-1}
$$

is an automorphism of G.

Suppose that g and h are elements of G. We have

$$
\begin{aligned}
\sigma(g) \sigma(h) & =\left(a g a^{-1}\right)\left(a h a^{-1}\right) \\
& =a g\left(a^{-1} a\right) h a^{-1} \\
& =a g h a^{-1} \\
& =\sigma(g h) .
\end{aligned}
$$

Thus σ is a group homomorphism.
(ii) Let $\phi: G \longrightarrow A(G)$ be the map which sends a to $\phi(a)=\sigma_{a}$. Show that ϕ is a group homomorphism.

Let a and $b \in G$. Let $\sigma=\sigma_{a}, \tau=\sigma_{b}$ and $\rho=\sigma_{a b}$. We want to check that $\rho=\sigma \tau$. Both sides of this equation are functions from G to G, so we just need to check that they have the same effect on an element $g \in G$:

$$
\begin{aligned}
(\sigma \tau)(g) & =\sigma(\tau(g)) \\
& =\sigma\left(b g b^{-1}\right) \\
& =a\left(b g b^{-1}\right) a^{-1} \\
& =(a b) g\left(b^{-1} a^{-1}\right) \\
& =(a b) g(a b)^{-1} \\
& =\rho(g) .
\end{aligned}
$$

Thus ϕ is a group homomorphism.
(iii) Show that the image $H=\phi(G)$ is isomorphic to G / Z, where Z is the centre of G.

We check that Z is the kernel of ϕ. Suppose that $a \in Z$ and let $\sigma=\sigma_{a}=\phi(a)$. If $g \in G$ then

$$
\sigma(g)=a g a^{-1}=g a a^{-1}=g .
$$

Thus σ is the identity map and so $a \in \operatorname{Ker} \phi$.
Now suppose that $a \in \operatorname{Ker} \phi$. Then σ is the identity map and so

$$
g=\sigma(g)=a g a^{-1} .
$$

Multiplying on the right by a we get

$$
g a=a g,
$$

so that $a \in Z$. Thus $Z=\operatorname{Ker} \phi$ and the result follows by the first isomorphism theorem.
(iv) Show that H is normal in $\operatorname{Aut}(G)$.

Suppose that τ is an automorphism of G and let $\sigma=\sigma_{a}=\phi(a)$. Let $b=\tau(a)$ and let $\rho=\sigma_{b}=\phi(b)$. We check that

$$
\tau \sigma \tau^{-1}=\rho
$$

Since both sides of this equation are functions from G to G we just need to check they have the same effect on elements g of G. As τ is a bijection we may find $h \in G$ such that $\tau(h)=g$. We have

$$
\begin{aligned}
\tau \sigma \tau^{-1}(g) & =\tau \sigma \tau^{-1}(\tau(g)) \\
& =\tau(\sigma(h)) \\
& =\tau\left(a h a^{-1}\right) \\
& =\tau(a) \tau(h) \tau\left(a^{-1}\right) \\
& =b \tau(h) b^{-1} \\
& =\rho(g) .
\end{aligned}
$$

As τ is arbitrary and $\rho \in H$ it follows that H is normal in $\operatorname{Aut}(G)$.

Bonus Challenge Problems

5. (10pts) Prove the Third isomorphism theorem.

Suppose that $K \subset H$ are two normal subgroups of a group G. Then

$$
G / K \simeq \frac{G / H}{H / K} .
$$

Let $\phi: G \longrightarrow G / H$ be the natural map. As the kernel of ϕ contains K there is a group homomorphism $f: G / K \longrightarrow G / H$ which makes the following diagram commute,

Since the diagram commutes, it follows that $f(g K)=g H$. It is then clear that f is surjective.
Suppose that $g K$ is in the kernel of f.

$$
f(g K)=g H=e H=H .
$$

Thus $g \in H$. Thus the kernel consists of all left cosets of the form $h K$ where $h \in H$, which is nothing more than H / K. Thus the result follows by the first isomorphism theorem.
6. (10pts) Determine $\operatorname{Aut}(\mathbb{Q})$, the automorphism group of the rationals under addition.
$\operatorname{Aut}(\mathbb{Q})$ is isomorphic to \mathbb{Q}^{*} the non-zero rationals under multiplication. Define a function

$$
f: \operatorname{Aut}(\mathbb{Q}) \longrightarrow \mathbb{Q}^{*}
$$

by sending the automorphism ϕ to the image of $1, f(\phi)=\phi(1)$. We check that f is a group homomorphism. Suppose that ϕ and ψ are two automorphisms of \mathbb{Q} and let $a=\phi(1)$ and $b=\psi(1)$.
Then

$$
\begin{aligned}
f(\psi \phi) & =\psi(\phi(1)) \\
& =\psi(a) \\
& =a \psi(1) \\
& =a b \\
& =\phi(1) \psi(1) \\
& =f(\phi) f(\psi),
\end{aligned}
$$

where we got from the second line to the third line using the fact that ψ is an automorphism.
Thus f is a group homomorphism.
Suppose that ϕ belongs to the kernel of f. Then $f(\phi)=1$ so that $\phi(1)=1$. In this case

$$
\phi(a)=a \phi(1)=a .
$$

so that ϕ is the identity. It follows that f is injective.
Finally suppose that $a \in \mathbb{Q}^{*}$. Let

$$
\phi: \mathbb{Q} \longrightarrow \mathbb{Q}
$$

be the function which sends q to $a q$. We check that ϕ is an automorphism. The inverse map is the function which sends q to q / a. Thus ϕ is a bijection. We check that ϕ is a group homomorphism:

$$
\begin{aligned}
\phi(p+q) & =a(p+q) \\
& =a p+a q \\
& =\phi(p)+\phi(q)
\end{aligned}
$$

Thus $\phi \in \operatorname{Aut}(\mathbb{Q})$. But $f(\phi)=\phi(1)=a$, so that f is surjective. Thus f is an isomorphism.

