SECOND MIDTERM MATH 100A, UCSD, AUTUMN 16

You have 50 minutes.

There are 4 problems, and the total number of points is 60. Show all your work. *Please make* your work as clear and easy to follow as possible.

Name:_____

Signature:_____

Problem	Points	Score
1	15	
2	15	
3	10	
4	20	
5	10	
6	10	
Total	60	

1. (15pts) Give the definition of conjugation.

The conjugate of h by g is ghg^{-1} .

(ii) Give the definition of an isomorphism.

A function $\phi: G \longrightarrow H$ between two groups is an isomorphism if ϕ is a bijection and $\phi(xy) = \phi(x)\phi(y)$ for all x and $y \in G$.

(iii) The kernel of a group homomorphism.

If $\phi \colon G \longrightarrow H$ is a group homomorphism the kernel of ϕ is the inverse image of the identity.

2. (15pts)
(i) Find the cycle decomposition of the following element of S₉,

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 4 & 3 & 5 & 7 & 1 & 2 & 6 & 9 & 8 \end{pmatrix}.$$

(ii) Compute the conjugate of σ by τ , where $\sigma = (1, 5, 6)(4, 3, 7, 2)$ and $\tau = (1, 5)(6, 3, 2)$.

(iii) Is it possible to conjugate σ to σ' , where $\sigma = (1, 5, 4)(2, 3)$ and $\sigma' = (1, 5)(3, 4, 2)$? If so, find an element τ so that σ' is the conjugate of σ by τ . Otherwise explain why it is impossible.

Yes it is possible, as both have the same cycle type.

$$\tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 5 & 2 & 4 \end{pmatrix}$$

will do the trick.

3. (10pts) Let G be a group and let Z be its centre. Prove that if G/Z is cyclic, then G is abelian.

Suppose that G/Z is generated by aZ. Then the elements of G/Z are of the form $a^i Z$, for $i \in \mathbb{Z}$.

Suppose that x and $y \in G$. Then xZ and yZ are two left cosets, so that $xZ = a^iZ$ and $yZ = a^jZ$, for some i and j. It follows that we may find z_1 and $z_2 \in Z$ so that $x = a^iz_1$ and $y = a^jz_2$. We have

$$xy = (a^{i}z_{1})(a^{j}z_{2})$$

= $a^{i}(z_{1}a^{j})z_{2}$
= $a^{i}(a^{j}z_{1})z_{2}$
= $a^{i}a^{j}(z_{1}z_{2})$
= $a^{i+j}(z_{1}z_{2})$.

Similarly $yx = a^{j+i}z_2z_1 = a^{i+j}z_1z_2 = xy$. Thus G is abelian.

4. (20pts) (i) Let $a \in G$. Prove that the map

 $\sigma = \sigma_a \colon G \longrightarrow G$ given as $\sigma(g) = aga^{-1}$,

is an automorphism of G.

Suppose that g and h are elements of G. We have

$$\sigma(g)\sigma(h) = (aga^{-1})(aha^{-1})$$
$$= ag(a^{-1}a)ha^{-1}$$
$$= agha^{-1}$$
$$= \sigma(gh).$$

Thus σ is a group homomorphism.

(ii) Let $\phi: G \longrightarrow A(G)$ be the map which sends a to $\phi(a) = \sigma_a$. Show that ϕ is a group homomorphism.

Let a and $b \in G$. Let $\sigma = \sigma_a$, $\tau = \sigma_b$ and $\rho = \sigma_{ab}$. We want to check that $\rho = \sigma \tau$. Both sides of this equation are functions from G to G, so we just need to check that they have the same effect on an element $g \in G$:

$$\begin{aligned} (\sigma\tau)(g) &= \sigma(\tau(g)) \\ &= \sigma(bgb^{-1}) \\ &= a(bgb^{-1})a^{-1} \\ &= (ab)g(b^{-1}a^{-1}) \\ &= (ab)g(ab)^{-1} \\ &= \rho(g). \end{aligned}$$

Thus ϕ is a group homomorphism.

(iii) Show that the image $H = \phi(G)$ is isomorphic to G/Z, where Z is the centre of G.

We check that Z is the kernel of ϕ . Suppose that $a \in Z$ and let $\sigma = \sigma_a = \phi(a)$. If $g \in G$ then

$$\sigma(g) = aga^{-1} = gaa^{-1} = g.$$

Thus σ is the identity map and so $a \in \operatorname{Ker} \phi$. Now suppose that $a \in \operatorname{Ker} \phi$. Then σ is the identity map and so

$$g = \sigma(g) = aga^{-1}$$

Multiplying on the right by a we get

$$ga = ag$$
,

so that $a \in Z$. Thus $Z = \text{Ker } \phi$ and the result follows by the first isomorphism theorem.

(iv) Show that H is normal in Aut(G).

Suppose that τ is an automorphism of G and let $\sigma = \sigma_a = \phi(a)$. Let $b = \tau(a)$ and let $\rho = \sigma_b = \phi(b)$. We check that

$$\tau \sigma \tau^{-1} = \rho.$$

Since both sides of this equation are functions from G to G we just need to check they have the same effect on elements g of G. As τ is a bijection we may find $h \in G$ such that $\tau(h) = g$. We have

$$\tau \sigma \tau^{-1}(g) = \tau \sigma \tau^{-1}(\tau(g))$$
$$= \tau(\sigma(h))$$
$$= \tau(aha^{-1})$$
$$= \tau(a)\tau(h)\tau(a^{-1})$$
$$= b\tau(h)b^{-1}$$
$$= \rho(g).$$

As τ is arbitrary and $\rho \in H$ it follows that H is normal in Aut(G).

Bonus Challenge Problems

5. (10pts) Prove the Third isomorphism theorem.

Suppose that $K \subset H$ are two normal subgroups of a group G. Then

$$G/K \simeq \frac{G/H}{H/K}.$$

Let $\phi: G \longrightarrow G/H$ be the natural map. As the kernel of ϕ contains K there is a group homomorphism $f: G/K \longrightarrow G/H$ which makes the following diagram commute,

Since the diagram commutes, it follows that f(gK) = gH. It is then clear that f is surjective.

Suppose that gK is in the kernel of f.

$$f(gK) = gH = eH = H.$$

Thus $g \in H$. Thus the kernel consists of all left cosets of the form hK where $h \in H$, which is nothing more than H/K. Thus the result follows by the first isomorphism theorem.

6. (10pts) Determine $Aut(\mathbb{Q})$, the automorphism group of the rationals under addition.

 $\operatorname{Aut}(\mathbb{Q})$ is isomorphic to \mathbb{Q}^* the non-zero rationals under multiplication. Define a function

$$f: \operatorname{Aut}(\mathbb{Q}) \longrightarrow \mathbb{Q}^*$$

by sending the automorphism ϕ to the image of 1, $f(\phi) = \phi(1)$. We check that f is a group homomorphism. Suppose that ϕ and ψ are two automorphisms of \mathbb{Q} and let $a = \phi(1)$ and $b = \psi(1)$. Then

$$f(\psi\phi) = \psi(\phi(1))$$
$$= \psi(a)$$
$$= a\psi(1)$$
$$= ab$$
$$= \phi(1)\psi(1)$$
$$= f(\phi)f(\psi),$$

where we got from the second line to the third line using the fact that ψ is an automorphism.

Thus f is a group homomorphism.

Suppose that ϕ belongs to the kernel of f. Then $f(\phi) = 1$ so that $\phi(1) = 1$. In this case

$$\phi(a) = a\phi(1) = a.$$

so that ϕ is the identity. It follows that f is injective. Finally suppose that $a \in \mathbb{Q}^*$. Let

$$\phi\colon \mathbb{Q}\longrightarrow \mathbb{Q},$$

be the function which sends q to aq. We check that ϕ is an automorphism. The inverse map is the function which sends q to q/a. Thus ϕ is a bijection. We check that ϕ is a group homomorphism:

$$\phi(p+q) = a(p+q)$$
$$= ap + aq$$
$$= \phi(p) + \phi(q).$$

Thus $\phi \in \operatorname{Aut}(\mathbb{Q})$. But $f(\phi) = \phi(1) = a$, so that f is surjective. Thus f is an isomorphism.