
MODEL ANSWERS TO THE THIRD HOMEWORK

Chapter 2, Section 4: 1. (b) Concentric circles with centre the origin.
(c) The real line union ∞, where the number m ∈ R∪ {∞} represents
the slope.
2. Chapter 2, Section 4: 9.

[0] = 0 +H = {[0], [4], [8], [12]}
[1] = 1 +H = {[1], [5], [9], [13]}
[2] = 2 +H = {[2], [6], [10], [14]}
[3] = 3 +H = {[3], [7], [11], [15]}

2. Chapter 2, Section 4: 10. Four.
2. Chapter 2, Section 4: 13. First we write down the elements of U18.
These will be the left cosets, generated by integers coprime to 18. Of
the integers between 1 and 17, those that are coprime are 1, 3, 5, 7,
11, 13 and 17.
Thus the elements of U18 are [1], [5], [7], [11], [13] and [17]. We calculate
the order of these elements.
[1] is the identity, it has order one.
Consider [5].

[5]2 = [52] = [25] = [7],

as 25 = 7 mod 18. In this case

[53] = [5][52] = [5][7] = [35] = [17],

as 35 = 17 mod 18.
We could keep computing. But at this point, we can be a little more
sly. By Lagrange the order of g = [5] divides the order of G. As G has
order 6, the order of [5] is one of 1, 2, 3, or 6. As we have already seen
that the order is not 1, 2 or 3, by a process of elimination, we know
that [5] has order 6.
As [17] = [5]3, [17]2 = [5]6 = [1]. So [17] has order 2. Similarly, as
[7] = [5]2, [7]3 = [5]6 = [1]. So the order of [7] divides 3. But then the
order of [7] is three.
It remains to compute the order of [11] and [13]. Now one of these is
the inverse of [5]. It must then have order six. The other would then be
[5]4 and so this element would have order dividing 3, and so its order
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would be 3. Let us see which is which.

[5][11] = [55] = [1]

Thus [11] is the inverse of [5] and so it has order 6. Thus [11] = [5]5.
It follows that [13] = [5]4 and so [13] has order 3.
Note that U18 is cyclic. In fact either [5] or [11] is a generator.
2. Chapter 2, Section 4: 13. First we write down the elements of U20.
Arguing as before, we get [1], [3], [7], [9], [11], [13], [17] and [19].
We compute the order of [3].

[3]2 = [9].

[3]3 = [27] = [7].

[34] = [3][33] = [3][7] = [21] = [1].

So [3] and [7] are elements of order 4 and [9] is an element of order 2.
Now note that the other elements are the additive inverses of the ele-
ments we just wrote down. Thus for example

[17]2 = [−3]2 = [3]2 = [9].

So [17] and [13] have order 4 and [11] and [19] = [−1] have order 2.
Thus U20 is not cyclic.
2. Chapter 2, Section 4: 16. For every i, there is a unique bi which is
the inverse of ai. Thus the elements of G are both a1, a2, . . . , an and
b1, b2, . . . , bn. Now

x2 = (a1a2 . . . an)(a1a2 . . . an)

= (a1a2 . . . an)(b1b2 . . . bn)

= (a1b1)(a2b2)(a3b3) . . . (anbn) = en = e,

where we used the fact that G is abelian to rearrange these products.
3. Chapter 2, Section 4: 24. Suppose not, that is suppose that there
is a number a such that a2 = −1 mod p. Let g = [a] ∈ Up. What is
the order of g?
Well

g2 = [a]2 = [a2] = [−1] 6= [1],

and so
g4 = (g2)2 = [−1]2 = [1].

Thus g has order 4. But the order of any element, divides the order of
the group, in this case p− 1 = 4n+ 2. But 4 does not divide 4n+ 2, a
contradiction.
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3. Chapter 2, Section 4: 26. Define

f : S −→ T

by the rule
f(Ha) = a−1H.

The key point is to check that f is well-defined. The problem is that
if b ∈ Ha, then Ha = Hb and we have to check that Ha−1 = Hb−1.
As b ∈ Ha, we have b = ha. But then b−1 = a−1h−1. As H is a
subgroup h−1 ∈ H. But then b−1 ∈ a−1H so that a−1H = b−1H and f
is well-defined.
To show that f is a bijection, we will show that it has an inverse. Define

g : T −→ S

by the rule
g(aH) = Ha−1.

We have to show that g is well-defined. This follows, exactly as in the
proof that f is well-defined. Then g(f(aH)) = g(Ha−1) = aH and
similarly fg is the identity. It follows that f is a bijection.
3. Chapter 2, Section 4: 27.
Let [a]L denote the left-coset generated by a and let [a]R denote the
right-coset generated by a. Suppose that b ∈ [a]L. Then [a]L = [b]L
and so aH = bH. By assumption Ha = Hb. But then [a]R = [b]R and
so b ∈ [a]R.
As b is an arbitrary element of [a]L, it follows that [a]L ⊂ [a]R. In other
words aH ⊂ Ha. Multiplying both sets on the right by a−1 we get the
inclusion

aHa−1 ⊂ H.

Now this is valid for any a ∈ G, so that

bHb−1 ⊂ H.

for all b ∈ G. Take b = a−1. Then

a−1Ha ⊂ H,

so that multipying on the left by a, we get

Ha ⊂ aH.

Thus Ha = aH and aHa−1 = H.
4. Challenge Problems Chapter 2, Section 4: 36. Let m = an − 1.
Then φ(m) is the order of the group G = Um. By Lagrange, it suffices
to exhibit a subgroup H of G of order n. Set g = [a] and let H = 〈g〉.
Then the order of H is the order of g. Now

gn = [a]n = [an] = [m+ 1] = [1].
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So the order of g divides n. On the other hand ai < m, for any i < n
so that

gi = [ai] 6= [1].

Thus the order of g is n and so n divides m by Lagrange.
4. Challenge Problems Chapter 2, Section 4: 37. Let G be a cyclic
group of order n, and let g ∈ G be a generator of G. Suppose h ∈ G.
Then h = gi, for some i.
I claim that h has order m if and only if i = kj, where k = n/m and j
is coprime to m.
Suppose that i = kj. Then

hm = (gi)m = gkjm = gjn = (gn)j = e.

Now suppose that a < m and consider ha = gakj. This is equal to the
identity if and only if akj is divisible by n. Dividing by k, this is the
same as saying that aj is divisible by m. As j is coprime to m, this
would mean that m divides a, impossible.
This establishes the claim. The number of integers of the form kj,
where j is coprime to m, is equal to the number of integers j coprime
to m (and less than m) which is φ(m).
4. Challenge Problems Chapter 2, Section 4: 38. Let G be a cyclic
group of order n. Partition the elements of G into subsets Am, where
Am consists of all elements of order m. Then

n = |G|

= |
⋃
m|n

Am|

=
∑
m|n

|Am|

=
∑
m|n

φ(m).
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