MODEL ANSWERS TO THE THIRD HOMEWORK

Chapter 2, Section 4: 1. (b) Concentric circles with centre the origin.
(c) The real line union ∞, where the number $m \in \mathbb{R} \cup\{\infty\}$ represents the slope.
2. Chapter 2, Section 4: 9.

$$
\begin{aligned}
& {[0]=0+H=\{[0],[4],[8],[12]\}} \\
& {[1]=1+H=\{[1],[5],[9],[13]\}} \\
& {[2]=2+H=\{[2],[6],[10],[14]\}} \\
& {[3]=3+H=\{[3],[7],[11],[15]\}}
\end{aligned}
$$

2. Chapter 2, Section 4: 10. Four.
3. Chapter 2, Section 4: 13. First we write down the elements of U_{18}. These will be the left cosets, generated by integers coprime to 18 . Of the integers between 1 and 17, those that are coprime are $1,3,5,7$, 11,13 and 17.
Thus the elements of U_{18} are [1], [5], [7], [11], [13] and [17]. We calculate the order of these elements.
[1] is the identity, it has order one.
Consider [5].

$$
[5]^{2}=\left[5^{2}\right]=[25]=[7],
$$

as $25=7 \bmod 18$. In this case

$$
\left[5^{3}\right]=[5]\left[5^{2}\right]=[5][7]=[35]=[17],
$$

as $35=17 \bmod 18$.
We could keep computing. But at this point, we can be a little more sly. By Lagrange the order of $g=[5]$ divides the order of G. As G has order 6 , the order of $[5]$ is one of $1,2,3$, or 6 . As we have already seen that the order is not 1,2 or 3 , by a process of elimination, we know that [5] has order 6.
As $[17]=[5]^{3},[17]^{2}=[5]^{6}=[1]$. So [17] has order 2. Similarly, as $[7]=[5]^{2},[7]^{3}=[5]^{6}=[1]$. So the order of [7] divides 3. But then the order of [7] is three.
It remains to compute the order of [11] and [13]. Now one of these is the inverse of [5]. It must then have order six. The other would then be $[5]^{4}$ and so this element would have order dividing 3, and so its order
would be 3 . Let us see which is which.

$$
[5][11]=[55]=[1]
$$

Thus [11] is the inverse of [5] and so it has order 6 . Thus $[11]=[5]^{5}$. It follows that $[13]=[5]^{4}$ and so $[13]$ has order 3.
Note that U_{18} is cyclic. In fact either [5] or [11] is a generator.
2. Chapter 2, Section 4: 13. First we write down the elements of U_{20}. Arguing as before, we get [1], [3], [7], [9], [11], [13], [17] and [19].
We compute the order of [3].

$$
\begin{gathered}
{[3]^{2}=[9] .} \\
{[3]^{3}=[27]=[7] .} \\
{\left[3^{4}\right]=[3]\left[3^{3}\right]=[3][7]=[21]=[1] .}
\end{gathered}
$$

So [3] and [7] are elements of order 4 and [9] is an element of order 2. Now note that the other elements are the additive inverses of the elements we just wrote down. Thus for example

$$
[17]^{2}=[-3]^{2}=[3]^{2}=[9] .
$$

So [17] and [13] have order 4 and [11] and $[19]=[-1]$ have order 2 . Thus U_{20} is not cyclic.
2. Chapter 2, Section 4: 16. For every i, there is a unique b_{i} which is the inverse of a_{i}. Thus the elements of G are both $a_{1}, a_{2}, \ldots, a_{n}$ and $b_{1}, b_{2}, \ldots, b_{n}$. Now

$$
\begin{aligned}
x^{2} & =\left(a_{1} a_{2} \ldots a_{n}\right)\left(a_{1} a_{2} \ldots a_{n}\right) \\
& =\left(a_{1} a_{2} \ldots a_{n}\right)\left(b_{1} b_{2} \ldots b_{n}\right) \\
& =\left(a_{1} b_{1}\right)\left(a_{2} b_{2}\right)\left(a_{3} b_{3}\right) \ldots\left(a_{n} b_{n}\right)=e^{n}=e,
\end{aligned}
$$

where we used the fact that G is abelian to rearrange these products. 3. Chapter 2, Section 4: 24. Suppose not, that is suppose that there is a number a such that $a^{2}=-1 \bmod p$. Let $g=[a] \in U_{p}$. What is the order of g ?
Well

$$
g^{2}=[a]^{2}=\left[a^{2}\right]=[-1] \neq[1],
$$

and so

$$
g^{4}=\left(g^{2}\right)^{2}=[-1]^{2}=[1] .
$$

Thus g has order 4. But the order of any element, divides the order of the group, in this case $p-1=4 n+2$. But 4 does not divide $4 n+2$, a contradiction.
3. Chapter 2, Section 4: 26. Define

$$
f: S \longrightarrow T
$$

by the rule

$$
f(H a)=a^{-1} H
$$

The key point is to check that f is well-defined. The problem is that if $b \in H a$, then $H a=H b$ and we have to check that $H a^{-1}=H b^{-1}$. As $b \in H a$, we have $b=h a$. But then $b^{-1}=a^{-1} h^{-1}$. As H is a subgroup $h^{-1} \in H$. But then $b^{-1} \in a^{-1} H$ so that $a^{-1} H=b^{-1} H$ and f is well-defined.
To show that f is a bijection, we will show that it has an inverse. Define

$$
g: T \longrightarrow S
$$

by the rule

$$
g(a H)=H a^{-1}
$$

We have to show that g is well-defined. This follows, exactly as in the proof that f is well-defined. Then $g(f(a H))=g\left(H a^{-1}\right)=a H$ and similarly $f g$ is the identity. It follows that f is a bijection.
3. Chapter 2, Section 4: 27.

Let $[a]_{L}$ denote the left-coset generated by a and let $[a]_{R}$ denote the right-coset generated by a. Suppose that $b \in[a]_{L}$. Then $[a]_{L}=[b]_{L}$ and so $a H=b H$. By assumption $H a=H b$. But then $[a]_{R}=[b]_{R}$ and so $b \in[a]_{R}$.
As b is an arbitrary element of $[a]_{L}$, it follows that $[a]_{L} \subset[a]_{R}$. In other words $a H \subset H a$. Multiplying both sets on the right by a^{-1} we get the inclusion

$$
a H a^{-1} \subset H
$$

Now this is valid for any $a \in G$, so that

$$
b H b^{-1} \subset H
$$

for all $b \in G$. Take $b=a^{-1}$. Then

$$
a^{-1} H a \subset H
$$

so that multipying on the left by a, we get

$$
H a \subset a H
$$

Thus $H a=a H$ and $a H a^{-1}=H$.
4. Challenge Problems Chapter 2, Section 4: 36. Let $m=a^{n}-1$. Then $\phi(m)$ is the order of the group $G=U_{m}$. By Lagrange, it suffices to exhibit a subgroup H of G of order n. Set $g=[a]$ and let $H=\langle g\rangle$. Then the order of H is the order of g. Now

$$
g^{n}=[a]^{n}=\left[a^{n}\right]_{3}=[m+1]=[1]
$$

So the order of g divides n. On the other hand $a^{i}<m$, for any $i<n$ so that

$$
g^{i}=\left[a^{i}\right] \neq[1] .
$$

Thus the order of g is n and so n divides m by Lagrange.
4. Challenge Problems Chapter 2, Section 4: 37. Let G be a cyclic group of order n, and let $g \in G$ be a generator of G. Suppose $h \in G$. Then $h=g^{i}$, for some i.
I claim that h has order m if and only if $i=k j$, where $k=n / m$ and j is coprime to m.
Suppose that $i=k j$. Then

$$
h^{m}=\left(g^{i}\right)^{m}=g^{k j m}=g^{j n}=\left(g^{n}\right)^{j}=e .
$$

Now suppose that $a<m$ and consider $h^{a}=g^{a k j}$. This is equal to the identity if and only if $a k j$ is divisible by n. Dividing by k, this is the same as saying that $a j$ is divisible by m. As j is coprime to m, this would mean that m divides a, impossible.
This establishes the claim. The number of integers of the form $k j$, where j is coprime to m, is equal to the number of integers j coprime to m (and less than m) which is $\phi(m)$.
4. Challenge Problems Chapter 2, Section 4: 38. Let G be a cyclic group of order n. Partition the elements of G into subsets A_{m}, where A_{m} consists of all elements of order m. Then

$$
\begin{aligned}
n & =|G| \\
& =\left|\bigcup_{m \mid n} A_{m}\right| \\
& =\sum_{m \mid n}\left|A_{m}\right| \\
& =\sum_{m \mid n} \phi(m) .
\end{aligned}
$$

