MODEL ANSWERS TO THE FOURTH HOMEWORK

2. Chapter 3, Section 1: 1 (a)

$$
\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
4 & 5 & 2 & 1 & 3 & 6
\end{array}\right) .
$$

(b)

$$
\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
3 & 1 & 2 & 4 & 5
\end{array}\right) .
$$

(c)

$$
\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
1 & 4 & 3 & 2 & 5
\end{array}\right) .
$$

5. It suffices to find the cycle type and take the lowest common multiples of the individual lengths of a cycle decomposition.
(a)

$$
(1,4)(2,5,3)
$$

Order 6.
(b)

Order 3.
(c)

Order 2.
2. Chapter 3, Section 2: 1 As σ and τ are cycles, we may find integers $a_{1}, a_{2}, \ldots, a_{k}$ and $b_{1}, b_{2}, \ldots, b_{l}$ such that $\sigma=\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ and $\tau=$ $\left(b_{1}, b_{2}, \ldots, b_{l}\right)$. To say that σ and τ are disjoint cycles is equivalent to saying that the two sets $S=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$ and $T=\left\{b_{1}, b_{2}, \ldots, b_{l}\right\}$ are disjoint.
We want to prove that

$$
\sigma \tau=\tau \sigma .
$$

As both sides of this equation are permutations of the first n natural numbers, it suffices to show that they have the same effect on any integer $1 \leq j \leq n$.
If j is not in $S \cup T$, then there is nothing to prove; both sides clearly fix j. Otherwise $j \in S \cup T$. By symmetry we may asume $j \in S$. As S and T are disjoint, it follows that $j \notin T$.

As $j \in S, j=a_{i}$, some i. Then $\sigma\left(a_{i}\right)=a_{i+1}$, where we take $i+1$ modulo k (that is we adopt the convention that $k+1=1$). In this case $a_{i+1} \in S$ so $a_{i+1} \notin T$ as well. Thus both sides send $j=a_{i}$ to a_{i+1}. Thus both sides have the same effect on j, regardless of j and so

$$
\sigma \tau=\tau \sigma
$$

2. Chapter 3, Section 2: 2
(a)

$$
(1,3,4,2)(5,7,9)
$$

Order 12.
(b)

$$
(1,7)(2,6)(3,5)
$$

Order 2.
(c)

$$
(1,6)(2,5)(3,7)
$$

Order 2.
2. Chapter 3, Section 2:

3 (a)

$$
(2,4,1)(3,5,7,6)
$$

Order 12.
(f)

$$
(1,4,2,5,3)
$$

Order 5.
2. Chapter 3, Section 2: 8 (a)

$$
(2,1)(2,4)(3,6)(3,7)(3,5)
$$

$$
\begin{equation*}
(1,3)(1,5)(1,2)(1,4) \tag{f}
\end{equation*}
$$

3. Easy, the conjugate is $(2,7,5,3)(1,6,4)$. The order of σ is 12 and the order of τ is three.
4. There are quite a few possibilities for τ. One obvious one is

$$
\tau=\left(\begin{array}{lllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
3 & 1 & 2 & 5 & 4 & 7 & 6
\end{array}\right)
$$

5. Let $H=\langle(1,2)(1,2,3, \ldots, n)\rangle$. We want to show that H is the whole of S_{n}. As the transpositions generate S_{n}, it suffices to prove that every transposition is in H.
Now the idea is that it is very hard to compute products in S_{n}, but it is easy to compute conjugates. So instead of using the fact that H is closed under products and inverses, let us use the fact that it is closed
under taking conjugates (clear, as a conjugate is a product of elements of H and their inverses).
Since conjugation preserves cycle type, we start with the transposition $\sigma=(1,2)$ (in fact this is the only place to start).
To warm up, consider conjugating σ with $\tau=(1,2,3, \ldots, n)$. The conjugate is $(2,3)$. Thus H must contain $(2,3)$.
Given that H contains $(2,3)$ it must contain the conjugate of $(2,3)$ by τ, which is $(3,4)$ (or what comes to the same thing, H must contain the conjugate of $(1,2)$ by $\left.\tau^{2}\right)$.
Continuing in this way, it is clear that H (by an easy induction in fact) must contain every transposition of the form $(i, i+1)$ and of course the last one, $(n, 1)=(1, n)$.
From here, let us try to show that H contains every transposition of the form $(1, i)$. For example, to get $(1,3)$, start with $(1,2)$ and conjugate it by $(2,3)$. Suppose, by way of induction, that H contains $(1, i)$. Then H must contain the conjugate of $(1, i)$ by $(i, i+1)$ which is $(1, i+1)$. Thus by induction H contains every transposition of the form $(1, i)$.
Now we are almost home. Note that H must contain every transposition of the form $(2, j)$. Indeed $(2, j)$ is the conjugate of $(1, j)$ by the transposition (1,2).
Now consider an aribtrary transposition (i, j). This is the conjugate of $(1,2)$ by the element $(1, i)(2, j)$. Thus H contains every transposition.
Aliter:
There is another way to show that the transpositions $(i, i+1), 1 \leq$ $i \leq n$ generate S_{n}. Consider a deck of cards in the order given by a permutation $\tau \in S_{n}$. It is enough to show that we can put the deck of cards into the correct order, just using $(i, i+1), 1 \leq i \leq n$.
Suppose that we have rearranged the cards so that the first k cards are in the correct order. By induction it is enough to show we can put the $(k+1)$ th card into the $(k+1)$ th position.
Consider the $(k+1)$ th card. Suppose it occupies position l. If $l=k+1$ we are done. Now $l>k$ since the first k cards are in their correct position. Thus $l>k+1$. If we apply the transposition $(l-1, l)$ then we put the $(k+1)$ th card into the $(l-1)$ th position. Continuing in this way, we can continue swapping until it is in the $(k+1)$ th position. It follows that we can undo any permutation by applying a sequence of transpositions $\tau_{1}, \tau_{2}, \ldots, \tau_{k}$ of the form $(i, i+1)$,

$$
\tau^{-1}=\tau_{1} \tau_{2} \ldots \tau_{k}
$$

Taking inverses we express τ as product in the opposite order.

