
MODEL ANSWERS TO THE FOURTH HOMEWORK

2. Chapter 3, Section 1: 1 (a)(
1 2 3 4 5 6
4 5 2 1 3 6

)
.

(b) (
1 2 3 4 5
3 1 2 4 5

)
.

(c) (
1 2 3 4 5
1 4 3 2 5

)
.

5. It suffices to find the cycle type and take the lowest common multi-
ples of the individual lengths of a cycle decomposition.
(a)

(1, 4)(2, 5, 3)

Order 6.
(b)

(1, 3, 2)

Order 3.
(c)

(2, 4)

Order 2.
2. Chapter 3, Section 2: 1 As σ and τ are cycles, we may find integers
a1, a2, . . . , ak and b1, b2, . . . , bl such that σ = (a1, a2, . . . , ak) and τ =
(b1, b2, . . . , bl). To say that σ and τ are disjoint cycles is equivalent to
saying that the two sets S = {a1, a2, . . . , ak} and T = {b1, b2, . . . , bl}
are disjoint.
We want to prove that

στ = τσ.

As both sides of this equation are permutations of the first n natural
numbers, it suffices to show that they have the same effect on any
integer 1 ≤ j ≤ n.
If j is not in S ∪ T , then there is nothing to prove; both sides clearly
fix j. Otherwise j ∈ S ∪ T . By symmetry we may asume j ∈ S. As S
and T are disjoint, it follows that j /∈ T .
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As j ∈ S, j = ai, some i. Then σ(ai) = ai+1, where we take i + 1
modulo k (that is we adopt the convention that k + 1 = 1). In this
case ai+1 ∈ S so ai+1 /∈ T as well. Thus both sides send j = ai to ai+1.
Thus both sides have the same effect on j, regardless of j and so

στ = τσ.

2. Chapter 3, Section 2: 2
(a)

(1, 3, 4, 2)(5, 7, 9)

Order 12.
(b)

(1, 7)(2, 6)(3, 5).

Order 2.
(c)

(1, 6)(2, 5)(3, 7)

Order 2.
2. Chapter 3, Section 2:
3 (a)

(2, 4, 1)(3, 5, 7, 6).

Order 12.
(f)

(1, 4, 2, 5, 3)

Order 5.
2. Chapter 3, Section 2: 8 (a)

(2, 1)(2, 4)(3, 6)(3, 7)(3, 5).

(f)

(1, 3)(1, 5)(1, 2)(1, 4).

3. Easy, the conjugate is (2, 7, 5, 3)(1, 6, 4). The order of σ is 12 and
the order of τ is three.
4. There are quite a few possibilities for τ . One obvious one is

τ =

(
1 2 3 4 5 6 7
3 1 2 5 4 7 6

)
.

5. Let H = 〈(1, 2)(1, 2, 3, . . . , n)〉. We want to show that H is the
whole of Sn. As the transpositions generate Sn, it suffices to prove
that every transposition is in H.
Now the idea is that it is very hard to compute products in Sn, but it
is easy to compute conjugates. So instead of using the fact that H is
closed under products and inverses, let us use the fact that it is closed
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under taking conjugates (clear, as a conjugate is a product of elements
of H and their inverses).
Since conjugation preserves cycle type, we start with the transposition
σ = (1, 2) (in fact this is the only place to start).
To warm up, consider conjugating σ with τ = (1, 2, 3, . . . , n). The
conjugate is (2, 3). Thus H must contain (2, 3).
Given that H contains (2, 3) it must contain the conjugate of (2, 3) by
τ , which is (3, 4) (or what comes to the same thing, H must contain
the conjugate of (1, 2) by τ 2).
Continuing in this way, it is clear that H (by an easy induction in fact)
must contain every transposition of the form (i, i+1) and of course the
last one, (n, 1) = (1, n).
From here, let us try to show that H contains every transposition of the
form (1, i). For example, to get (1, 3), start with (1, 2) and conjugate it
by (2, 3). Suppose, by way of induction, that H contains (1, i). Then
H must contain the conjugate of (1, i) by (i, i + 1) which is (1, i + 1).
Thus by induction H contains every transposition of the form (1, i).
Now we are almost home. Note that H must contain every transposi-
tion of the form (2, j). Indeed (2, j) is the conjugate of (1, j) by the
transposition (1, 2).
Now consider an aribtrary transposition (i, j). This is the conjugate of
(1, 2) by the element (1, i)(2, j). Thus H contains every transposition.
Aliter:
There is another way to show that the transpositions (i, i + 1), 1 ≤
i ≤ n generate Sn. Consider a deck of cards in the order given by a
permutation τ ∈ Sn. It is enough to show that we can put the deck of
cards into the correct order, just using (i, i+ 1), 1 ≤ i ≤ n.
Suppose that we have rearranged the cards so that the first k cards are
in the correct order. By induction it is enough to show we can put the
(k + 1)th card into the (k + 1)th position.
Consider the (k+1)th card. Suppose it occupies position l. If l = k+1
we are done. Now l > k since the first k cards are in their correct
position. Thus l > k + 1. If we apply the transposition (l − 1, l) then
we put the (k + 1)th card into the (l − 1)th position. Continuing in
this way, we can continue swapping until it is in the (k+ 1)th position.
It follows that we can undo any permutation by applying a sequence
of transpositions τ1, τ2, . . . , τk of the form (i, i+ 1),

τ−1 = τ1τ2 . . . τk.

Taking inverses we express τ as product in the opposite order.
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