MODEL ANSWERS TO THE FIFTH HOMEWORK

1. Chapter 3, Section 5: 1 (a) Yes. Given a and b € Z,
¢(ab) = [ab]
= [a][0]
= ¢(a)o(b).
This map is clearly surjective but not injective. Indeed the kernel is
easily seen to be nZ.

(b) No. Suppose that G is not abelian and that zy # yz. Then
xly~t £ y~tz~l. On the other hand

o(xy) = (vy)~"
— oyl

7é J:flyfl

= ¢(z)9(y),

and one wrong certainly does not make a right.
(c) Yes. Suppose that z and y are in G. As G is abelian

p(y) = (xy)~"

y
— iy
= o(x)o(y).

Thus ¢ is a homomorphism. Suppose that a € G. Then a is the inverse
of b = a™!, so that ¢(b) = a. Thus ¢ is surjective. Suppose that a is
in the kernel of ¢. Then a=! = e and so a = e. Thus the kernel of ¢ is
trivial and ¢ is injective.

(d) Yes. ¢ is a homomorphism as the product of two positive numbers
is positive, the product of two negative numbers is positive and the
product of a negative and a positive number is negative.

This map is clearly surjective. The kernel consists of all positive real
numbers. Thus ¢ is far from injective.

(e) Yes. Suppose that z and y are in G. Then

o(zy) = (zy)"
= ¢(2)9(y).
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In general this map is neither injective nor surjective. For example, if
G = Z and n = 2 then the image of ¢ is 27Z, and for example 1 is not
in the image.

Now suppose that G = Z4 and n = 2. Then 2[2] = [4] = [0], so that [2]
is in the kernel.

10. We need to check that aHa™! = H for all a € G. If we pick a € H
there is nothing to prove. Now a = f¢’. Conjugation by a is the same
as conjugation by ¢’ followed by conjugation by f?. So we only need to
worry about conjugation by f. Now gf = fg~! so that fgf ! = g~ L.
Thus conjugation by f leaves H fixed, as it sends a generator to a
generator.

12. Let g € G. We want to show that gZ¢g~! C Z. Pick z € Z. Then
2 commutes with g, so that gzg~! = zgg™ = 2 € Z. Thus Z is normal
in G.

17. Let g € G. We want to show that g(M N N)g~' € M N N. Pick
he MNN. Then h € M and h € N. It follows that ghg™' € M and
ghg™' € N, as both M and N are normal in G. But then ghg™! €
M NN and so M N N is normal.

22. H ={i,(1,2)}. Then the left cosets of H are

(a)
H={e/(1,2)}
(1,3)H = {(1,3),(1,2,3)}
(2,3)H = {(2,3),(1,3,2)}

and the right cosets are
(b)
H={e, (1,2)}
H(1,3) ={(1,3),(1,3,2)}
H(2,3) ={(2,3),(1,2,3)}.

(c) Clearly not every left coset is a right coset. For example {(1,3), (1,2,3)}
is a left coset, but not a right coset.

27. Let g € G. We have to show that gd(N)g~' C O(N). Now as 0 is
surjective, we may write g = 6(h), for some h € G. Pick m € 0(N).
Then m = 6(n), for some n € N. We have

0(h)0(n)o(h)~"
= 9(hnh™1).
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Now hnh~! € N as N is normal. So gmg~! € O(N) and 6(N) is normal
in G.

37. Note that S is the group of permutations of three objects. So we
want to find three things on which G acts. Pick any element h of G.
Then the order of h divides the order of GG. As the order of G is six, it
follows that the order of h is one, two, three, or six. It cannot be six,
as then G would be cyclic, whence abelian, and it can only be one if h
is the identity.

Note that elements of order 3 come in pairs. If a is an element of order
3 then a? = a~! also has order three and they are the two elements of
(a) not equal to the identity. So the number of elements of order 3 is
even. As there are five elements of G which don’t have order one, it
follows that at least one element a of G has order 2. If H = (a) then
H is a subgroup of G of order two.

Let b be any other element of G. Consider the subgroup K = (a,b) of
G generated by a and b. Then K has at least three elements, e, a and
b and on the other hand the order of K is even by Lagrange as H is a
subgroup of order 2. Thus K has at least four elements. As the order
of K divides the order of G the order of K is six, so that G = (a,b) is
generated by a and b.

If ab = ba it is not hard to check that G is abelian. As G is not abelian
we must have ab # ba.

As H is a subgroup of G of order two, the number of left cosets of H
in G (the index of H in G) is equal to three, by Lagrange. Let S be
the set of left cosets. Define a map from G to A(S),

¢: G — A(9)
by sending g to 0 = ¢(g), where o is the map,
c: 58— S

o(xH) = gxH, that is, o acts on the left cosets by left multiplication
by g. If tH = yH so that y = xh for some h € H then

gy = g(wh) = (gz)h,

so that (gy)H = (gx)H and o is well-defined. o is a bijection, as its
inverse 7 is given by left multiplication by g=!. Now we check that ¢ is
a homomorphism. Suppose that g; and gy are two elements of G. Set

o; = ¢(g;) and let 7 = ¢(g192). We need to check that T = gy045. Pick
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a left coset xH. Then

o109(xH) = 01(goxH)
= 1920 H
=T1(zH).

Thus ¢ is a homomorphism.
We check that ¢ is injective. It suffices to prove that the kernel of ¢ is
trivial. Pick g € Ker ¢. Then o = ¢(g) is the identity permutation, so
that for every left coset xH,

grH = zH.

Consider the left coset H. Then gH = H. It follows that g € H, so
that either ¢ = e or ¢ = a. If ¢ = a, then consider the left coset bH.
We would then have abH = bH, so that ab = bh/, where b’ € H. So
h =eor b =a. If B = e, then ab = b, and a = e, a contradiction.
Otherwise ab = ba, a contradiction. Thus g = e, the kernel of ¢ is
trivial and ¢ is injective. As A(S) has order six and ¢ is injective, it
follows that ¢ is a bijection.

Thus G is isomorphic to Ss.

43. Let G be a group of order nine. Let ¢ € G be an element of G.
Then the order of g divides the order of G. Thus the order of g is 1, 3
or 9. If GG is cyclic then G is certainly abelian. Thus we may assume
that there is no element of order nine. On the other hand the order of
g is one if and only if g = e.

Thus we may assume that every element of GG, other than the identity,
has order three. Let a € G be an element of G, other than the identity.
Let H = (a). Then H has order three. Let S be the set of left cosets
of H in G. By Lagrange S has three elements. Let

¢ G — A(S) ~ S,

be the corresponding homomorphism. Let G’ be the order of the image.
Then the order of G’ is the number of left cosets of the kernel, which
divides G by Lagrange. On the other hand the order of G’ divides the
order of A(S), again by Lagrange.

Thus G’ must have order three. It follows that the kernel of ¢ has order
three. Thus the kernel of ¢ is H and H is a normal subgroup of G.
Let b € G be any element of G that does not commute with a. Then

bab~! must be an element of H, as H is normal in G, and so bab™! = a?.
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It follows that ba = a?b?. In this case
(ba)? = baba
= a’b%*ba
= d’a
=e.
Thus ba is an element of order 2, which is impossible as G has order 9.
49. Let S be the set of left cosets of H in G. Define a map

¢: G— A(9)
by sending g € G to the permutation o € A(S), a map
c: 85 —S

defined by the rule o(aH) = gaH. Note that 7, which acts by multi-
plication on the left by ¢! is the inverse of o, so that o is indeed a
permutation of S. It is easy to check, as before, that ¢ is a homomor-
phism.

Let N be the kernel of ¢. Then N is normal in G. Suppose that
a € N and let 0 = ¢(a). Then o is the identity permutation of S. In
particular o(H) = H, so that aH = H. Thus a € H and so N C H.
Let n be the index of H, so that the image of G has at most n! elements.
In this case there are at most n! left cosets of N in G, since each left
coset of N in G is mapped to a different element of A(S). Thus the
index of N is at most n!.

52. Let A be the set of elements such that ¢(a) = a~!. Pick an element
g€ Gandlet B=g'A. Then

|ANB|=|A|+|B|—-|AU B|
> (3/9)|G|+ (3/4)|G| - |G
= (1/2)|G].

Now pick h € AN B and suppose that g € A. Then gh € A. It follows
that

h™lg™ = (gh)™
= ¢(gh)
= ¢(g)o(h)
— g
Taking inverses, we see that g and h must commute. Let C' be the

centraliser of g. Then AN B C C, so that C' contains more than

half the elements of G. On the other hand, C' is subgroup of G. By
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Lagrange the order of C' divides the order of G. Thus C' = G. Hence g
is in the centre Z of GG and so the centre Z of G contains at least 3/4
of the elements of G. But then the centre of G must also equal G, as
it is also a subgroup of GG. Thus G is abelian.



