
MODEL ANSWERS TO THE FIFTH HOMEWORK

1. Chapter 3, Section 5: 1 (a) Yes. Given a and b ∈ Z,

φ(ab) = [ab]

= [a][b]

= φ(a)φ(b).

This map is clearly surjective but not injective. Indeed the kernel is
easily seen to be nZ.
(b) No. Suppose that G is not abelian and that xy 6= yx. Then
x−1y−1 6= y−1x−1. On the other hand

φ(xy) = (xy)−1

= y−1x−1

6= x−1y−1

= φ(x)φ(y),

and one wrong certainly does not make a right.
(c) Yes. Suppose that x and y are in G. As G is abelian

φ(xy) = (xy)−1

= y−1x−1

= x−1y−1

= φ(x)φ(y).

Thus φ is a homomorphism. Suppose that a ∈ G. Then a is the inverse
of b = a−1, so that φ(b) = a. Thus φ is surjective. Suppose that a is
in the kernel of φ. Then a−1 = e and so a = e. Thus the kernel of φ is
trivial and φ is injective.
(d) Yes. φ is a homomorphism as the product of two positive numbers
is positive, the product of two negative numbers is positive and the
product of a negative and a positive number is negative.
This map is clearly surjective. The kernel consists of all positive real
numbers. Thus φ is far from injective.
(e) Yes. Suppose that x and y are in G. Then

φ(xy) = (xy)n

= xnyn

= φ(x)φ(y).
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In general this map is neither injective nor surjective. For example, if
G = Z and n = 2 then the image of φ is 2Z, and for example 1 is not
in the image.
Now suppose that G = Z4 and n = 2. Then 2[2] = [4] = [0], so that [2]
is in the kernel.
10. We need to check that aHa−1 = H for all a ∈ G. If we pick a ∈ H
there is nothing to prove. Now a = f igj. Conjugation by a is the same
as conjugation by gj followed by conjugation by f i. So we only need to
worry about conjugation by f . Now gf = fg−1 so that fgf−1 = g−1.
Thus conjugation by f leaves H fixed, as it sends a generator to a
generator.
12. Let g ∈ G. We want to show that gZg−1 ⊂ Z. Pick z ∈ Z. Then
z commutes with g, so that gzg−1 = zgg−1 = z ∈ Z. Thus Z is normal
in G.
17. Let g ∈ G. We want to show that g(M ∩ N)g−1 ⊂ M ∩ N . Pick
h ∈ M ∩N . Then h ∈ M and h ∈ N . It follows that ghg−1 ∈ M and
ghg−1 ∈ N , as both M and N are normal in G. But then ghg−1 ∈
M ∩N and so M ∩N is normal.
22. H = {i, (1, 2)}. Then the left cosets of H are
(a)

H = {e, (1, 2)}
(1, 3)H = {(1, 3), (1, 2, 3)}
(2, 3)H = {(2, 3), (1, 3, 2)}

and the right cosets are
(b)

H = {e, (1, 2)}
H(1, 3) = {(1, 3), (1, 3, 2)}
H(2, 3) = {(2, 3), (1, 2, 3)}.

(c) Clearly not every left coset is a right coset. For example {(1, 3), (1, 2, 3)}
is a left coset, but not a right coset.
27. Let g ∈ G. We have to show that gθ(N)g−1 ⊂ θ(N). Now as θ is
surjective, we may write g = θ(h), for some h ∈ G. Pick m ∈ θ(N).
Then m = θ(n), for some n ∈ N . We have

gmg−1 = θ(h)θ(n)θ(h)−1

= θ(hnh−1).
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Now hnh−1 ∈ N as N is normal. So gmg−1 ∈ θ(N) and θ(N) is normal
in G.
37. Note that S3 is the group of permutations of three objects. So we
want to find three things on which G acts. Pick any element h of G.
Then the order of h divides the order of G. As the order of G is six, it
follows that the order of h is one, two, three, or six. It cannot be six,
as then G would be cyclic, whence abelian, and it can only be one if h
is the identity.
Note that elements of order 3 come in pairs. If a is an element of order
3 then a2 = a−1 also has order three and they are the two elements of
〈a〉 not equal to the identity. So the number of elements of order 3 is
even. As there are five elements of G which don’t have order one, it
follows that at least one element a of G has order 2. If H = 〈a〉 then
H is a subgroup of G of order two.
Let b be any other element of G. Consider the subgroup K = 〈a, b〉 of
G generated by a and b. Then K has at least three elements, e, a and
b and on the other hand the order of K is even by Lagrange as H is a
subgroup of order 2. Thus K has at least four elements. As the order
of K divides the order of G the order of K is six, so that G = 〈a, b〉 is
generated by a and b.
If ab = ba it is not hard to check that G is abelian. As G is not abelian
we must have ab 6= ba.
As H is a subgroup of G of order two, the number of left cosets of H
in G (the index of H in G) is equal to three, by Lagrange. Let S be
the set of left cosets. Define a map from G to A(S),

φ : G −→ A(S)

by sending g to σ = φ(g), where σ is the map,

σ : S −→ S

σ(xH) = gxH, that is, σ acts on the left cosets by left multiplication
by g. If xH = yH so that y = xh for some h ∈ H then

gy = g(xh) = (gx)h,

so that (gy)H = (gx)H and σ is well-defined. σ is a bijection, as its
inverse τ is given by left multiplication by g−1. Now we check that φ is
a homomorphism. Suppose that g1 and g2 are two elements of G. Set
σi = φ(gi) and let τ = φ(g1g2). We need to check that τ = σ1σ2. Pick
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a left coset xH. Then

σ1σ2(xH) = σ1(g2xH)

= g1g2xH

= τ(xH).

Thus φ is a homomorphism.
We check that φ is injective. It suffices to prove that the kernel of φ is
trivial. Pick g ∈ Kerφ. Then σ = φ(g) is the identity permutation, so
that for every left coset xH,

gxH = xH.

Consider the left coset H. Then gH = H. It follows that g ∈ H, so
that either g = e or g = a. If g = a, then consider the left coset bH.
We would then have abH = bH, so that ab = bh′, where h′ ∈ H. So
h′ = e or h′ = a. If h′ = e, then ab = b, and a = e, a contradiction.
Otherwise ab = ba, a contradiction. Thus g = e, the kernel of φ is
trivial and φ is injective. As A(S) has order six and φ is injective, it
follows that φ is a bijection.
Thus G is isomorphic to S3.
43. Let G be a group of order nine. Let g ∈ G be an element of G.
Then the order of g divides the order of G. Thus the order of g is 1, 3
or 9. If G is cyclic then G is certainly abelian. Thus we may assume
that there is no element of order nine. On the other hand the order of
g is one if and only if g = e.
Thus we may assume that every element of G, other than the identity,
has order three. Let a ∈ G be an element of G, other than the identity.
Let H = 〈a〉. Then H has order three. Let S be the set of left cosets
of H in G. By Lagrange S has three elements. Let

φ : G −→ A(S) ' S3

be the corresponding homomorphism. Let G′ be the order of the image.
Then the order of G′ is the number of left cosets of the kernel, which
divides G by Lagrange. On the other hand the order of G′ divides the
order of A(S), again by Lagrange.
Thus G′ must have order three. It follows that the kernel of φ has order
three. Thus the kernel of φ is H and H is a normal subgroup of G.
Let b ∈ G be any element of G that does not commute with a. Then
bab−1 must be an element of H, as H is normal in G, and so bab−1 = a2.
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It follows that ba = a2b2. In this case

(ba)2 = baba

= a2b2ba

= a2a

= e.

Thus ba is an element of order 2, which is impossible as G has order 9.
49. Let S be the set of left cosets of H in G. Define a map

φ : G −→ A(S)

by sending g ∈ G to the permutation σ ∈ A(S), a map

σ : S −→ S

defined by the rule σ(aH) = gaH. Note that τ , which acts by multi-
plication on the left by g−1 is the inverse of σ, so that σ is indeed a
permutation of S. It is easy to check, as before, that φ is a homomor-
phism.
Let N be the kernel of φ. Then N is normal in G. Suppose that
a ∈ N and let σ = φ(a). Then σ is the identity permutation of S. In
particular σ(H) = H, so that aH = H. Thus a ∈ H and so N ⊂ H.
Let n be the index of H, so that the image of G has at most n! elements.
In this case there are at most n! left cosets of N in G, since each left
coset of N in G is mapped to a different element of A(S). Thus the
index of N is at most n!.
52. Let A be the set of elements such that φ(a) = a−1. Pick an element
g ∈ G and let B = g−1A. Then

|A ∩B| = |A|+ |B| − |A ∪B|
> (3/4)|G|+ (3/4)|G| − |G|
= (1/2)|G|.

Now pick h ∈ A∩B and suppose that g ∈ A. Then gh ∈ A. It follows
that

h−1g−1 = (gh)−1

= φ(gh)

= φ(g)φ(h)

= g−1h−1.

Taking inverses, we see that g and h must commute. Let C be the
centraliser of g. Then A ∩ B ⊂ C, so that C contains more than
half the elements of G. On the other hand, C is subgroup of G. By
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Lagrange the order of C divides the order of G. Thus C = G. Hence g
is in the centre Z of G and so the centre Z of G contains at least 3/4
of the elements of G. But then the centre of G must also equal G, as
it is also a subgroup of G. Thus G is abelian.
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