MODEL ANSWERS TO THE SIXTH HOMEWORK

1. Chapter 3, Section 6: 1 There are two cosets. The first coset is $[1]=N$, the second is the coset containing -1 , which is the set of all negative real numbers.
$[1] \cdot[1]=[1],[1] \cdot[-1]=[-1] \cdot[1]=[-1]$ and $[-1] \cdot[-1]=[1]$.
Chapter 3, Section 6: 2. Let $a \in \mathbb{R}$. Then $[a]=\{a,-a\}$. Thus any coset contains two elements, exactly one of which is a positive real number. Given a and b positive, $[a][b]=[a b]$. Define a homomorphism

$$
\phi: G \longrightarrow \mathbb{R}^{+}
$$

by sending a to $|a|$. The kernel is $N=\{1,-1\}$. By the first Isomorphism Theorem, $G / N \simeq \mathbb{R}^{+}$.
Chapter 3, Section 6: 3. Consider the canonical homomorphism

$$
u: G \longrightarrow G / N
$$

Then $M=u^{-1}(\bar{M})$. As the kernel of u is N, it follows that M contains N, as \bar{M} contains the identity of G / N.
To show that M is a subgroup of G, it suffices to prove that it is closed under products and inverses. Suppose that a and b are in M. Then $u(a)$ and $u(b)$ are in \bar{M}. Then $u(a b)=u(a) u(b) \in \bar{M}$ as \bar{M} is closed under products.
Thus $a b \in M$ and M is closed under products.
Similarly $u\left(a^{-1}\right)=u(a)^{-1} \in \bar{M}$ as \bar{M} is closed under inverses. Thus $a^{-1} \in M$ and M is closed under inverses.
Thus M is a subgroup of G.
Chapter 3, Section 6: 4. Suppose that \bar{M} is normal in G / N.
Pick $g \in G$. We want to prove $g M g^{-1} \subset M$. Pick $a \in M$. Then

$$
\phi\left(g a g^{-1}\right)=\phi(g) \phi(a) \phi(g)^{-1}
$$

As \bar{M} is normal in G / N, it follows that $\phi(g) \phi(a) \phi(g)^{-1} \in \bar{M}$. But then $g a g^{-1} \in M$.
Chapter 3, Section 6: 7. As G is cyclic, G is generated by a single element a. But then G / N is generated by $u(a)=a N$.
Chapter 3, Section 6: 8. Pick two elements of G / N. As G / N is the set of left cosets in G, these two elements have the form $a N$ and $b N$. It
follows that

$$
\begin{aligned}
(a N)(b N) & =a b N \\
& =b a N \\
& =(b N)(a N),
\end{aligned}
$$

where we use the fact that G is abelian to deduce $a b=b a$.
But then G / N is abelian.
Chapter 3, Section 6: 11. Suppose that G / Z is cyclic. Then there is an element a of G such that $a Z$ generates G / Z, so that every left coset has the form $a^{i} Z$, for some i. Pick two elements x and y of G. Then $x Z=a^{i} Z$ and $y Z=a^{j} Z$, for some i and j, so that $x=a^{i} z_{1}$ and $y=a^{j} z_{2}$, for $z_{i} \in Z, i=1,2$.
Then

$$
\begin{aligned}
x y & =\left(a^{i} z_{1}\right)\left(a^{j} z_{2}\right) \\
& =a^{i} a^{j} z_{1} z_{2} \\
& =a^{i+j} z_{1} z_{2} .
\end{aligned}
$$

Similarly $y x=a^{i+j} z_{1} z_{2}$. Thus $x y=y x$ and G is abelian.
Chapter 3, Section 6: 12. Suppose that G / N is abelian. Pick a and $b \in G$. Then

$$
\begin{aligned}
a N b N & =a b N \\
& =b a N \\
& =b N a N,
\end{aligned}
$$

so that $a b N=b a N$ and so $b a=a b n$ for some $n \in N$. It follows that $b^{-1} a^{-1} b a=n \in N$. Thus $c^{-1} d^{-1} c d \in N$ for all c and d. Replacing c by a^{-1} and d by b^{-1} we get $a b a^{-1} b^{-1} \in N$.
Chapter 3, Section 7: 2. We want to use the First Isomorphism Theorem. Define a homomorphism

$$
\phi: G \longrightarrow \mathbb{R}
$$

by sending f to $\phi(f)=f(1 / 4)$. Suppose that f and $g \in G$. Then

$$
\begin{aligned}
\phi(f+g) & =(f+g)(1 / 4) \\
& =f(1 / 4)+g(1 / 4) \\
& =\phi(f)+\phi(g) .
\end{aligned}
$$

Thus ϕ is a homorphism. ϕ is clearly surjective. For example, given a real number a, let f be the constant function $f(x)=a$. Then $\phi(f)=$ $f(1 / 4)=a$.

The kernel of ϕ consists of all functions that vanish at $1 / 4$, that is N. Thus by the First Isomorphism Theorem, $G / N \simeq \mathbb{R}$.
Chapter 3, Section 7: 4. We first prove (a) and (c). Define a homomorphism

$$
\phi: G \longrightarrow G_{2}
$$

by sending $g=\left(g_{1}, g_{2}\right)$ to g_{2}. Suppose that $g=\left(g_{1}, g_{2}\right)$ and $h=\left(h_{1}, h_{2}\right)$ are in G. Then

$$
\begin{aligned}
\phi(g h) & =\phi\left(g_{1} h_{1}, g_{2} h_{2}\right) \\
& =g_{2} h_{2} \\
& =\phi\left(g_{1}, g_{2}\right) \phi\left(h_{1}, h_{2}\right) \\
& =\phi(g) \phi(h) .
\end{aligned}
$$

Thus ϕ is a homomorphism. ϕ is clearly surjective as given $g_{2} \in G$, $\phi\left(e_{1}, g_{2}\right)=g_{2}$.
Suppose that $\left(g_{1}, g_{2}\right) \in \operatorname{Ker} \phi$. Then $g_{2}=e_{2}$. Thus $N=\operatorname{Ker} \phi$. Hence (a). (c) follows from the First Isomorphism Theorem. To prove (b), define a homomorphism

$$
f: N \longrightarrow G_{1}
$$

by sending $\left(g_{1}, e_{2}\right)$ to g_{1}. This is clearly an isomorphism.
Chapter 3, Section 7: 6. By definition the order of a is the order of the subgroup $H=\langle a\rangle$ and the order of $a N$ is the order of the subgroup $H^{\prime}=\langle a N\rangle$. Now it is clear that H^{\prime} is the image of H under the canonical homomorphism

$$
u: G \longrightarrow G / N
$$

So it suffices to prove that if we have a surjective homomorphism

$$
\phi: H \longrightarrow H^{\prime}
$$

then the order of H^{\prime} divides the order of H. But by the first isomorphism Theorem,

$$
H^{\prime} \simeq H / H^{\prime \prime},
$$

where $H^{\prime \prime}$ is the kernel of ϕ. Thus the order of H^{\prime} is the index of $H^{\prime \prime}$ in H, the number of left cosets of $H^{\prime \prime}$ in H, which by Lagrange divides the order of H.

