MODEL ANSWERS TO THE SIXTH HOMEWORK

1. Chapter 3, Section 6: 1 There are two cosets. The first coset is [1] = N, the second is the coset containing -1, which is the set of all negative real numbers.

 $[1] \cdot [1] = [1], [1] \cdot [-1] = [-1] \cdot [1] = [-1] \text{ and } [-1] \cdot [-1] = [1].$

Chapter 3, Section 6: 2. Let $a \in \mathbb{R}$. Then $[a] = \{a, -a\}$. Thus any coset contains two elements, exactly one of which is a positive real number. Given a and b positive, [a][b] = [ab]. Define a homomorphism

$$\phi \colon G \longrightarrow \mathbb{R}^+,$$

by sending a to |a|. The kernel is $N = \{1, -1\}$. By the first Isomorphism Theorem, $G/N \simeq \mathbb{R}^+$.

Chapter 3, Section 6: 3. Consider the canonical homomorphism

$$u: G \longrightarrow G/N$$
.

Then $M = u^{-1}(\bar{M})$. As the kernel of u is N, it follows that M contains N, as \bar{M} contains the identity of G/N.

To show that M is a subgroup of G, it suffices to prove that it is closed under products and inverses. Suppose that a and b are in M. Then u(a) and u(b) are in \bar{M} . Then $u(ab) = u(a)u(b) \in \bar{M}$ as \bar{M} is closed under products.

Thus $ab \in M$ and M is closed under products.

Similarly $u(a^{-1}) = u(a)^{-1} \in \bar{M}$ as \bar{M} is closed under inverses. Thus $a^{-1} \in M$ and M is closed under inverses.

Thus M is a subgroup of G.

Chapter 3, Section 6: 4. Suppose that \overline{M} is normal in G/N.

Pick $g \in G$. We want to prove $gMg^{-1} \subset M$. Pick $a \in M$. Then

$$\phi(gag^{-1}) = \phi(g)\phi(a)\phi(g)^{-1}.$$

As \bar{M} is normal in G/N, it follows that $\phi(g)\phi(a)\phi(g)^{-1} \in \bar{M}$. But then $gag^{-1} \in M$.

Chapter 3, Section 6: 7. As G is cyclic, G is generated by a single element a. But then G/N is generated by u(a) = aN.

Chapter 3, Section 6: 8. Pick two elements of G/N. As G/N is the set of left cosets in G, these two elements have the form aN and bN. It

follows that

$$(aN)(bN) = abN$$
$$= baN$$
$$= (bN)(aN),$$

where we use the fact that G is abelian to deduce ab = ba. But then G/N is abelian.

Chapter 3, Section 6: 11. Suppose that G/Z is cyclic. Then there is an element a of G such that aZ generates G/Z, so that every left coset has the form a^iZ , for some i. Pick two elements x and y of G. Then $xZ = a^iZ$ and $yZ = a^jZ$, for some i and j, so that $x = a^iz_1$ and $y = a^jz_2$, for $z_i \in Z$, i = 1, 2. Then

$$xy = (a^i z_1)(a^j z_2)$$
$$= a^i a^j z_1 z_2$$
$$= a^{i+j} z_1 z_2.$$

Similarly $yx = a^{i+j}z_1z_2$. Thus xy = yx and G is abelian. Chapter 3, Section 6: 12. Suppose that G/N is abelian. Pick a and $b \in G$. Then

$$aNbN = abN$$
$$= baN$$
$$= bNaN,$$

so that abN = baN and so ba = abn for some $n \in N$. It follows that $b^{-1}a^{-1}ba = n \in N$. Thus $c^{-1}d^{-1}cd \in N$ for all c and d. Replacing c by a^{-1} and d by b^{-1} we get $aba^{-1}b^{-1} \in N$.

Chapter 3, Section 7: 2. We want to use the First Isomorphism Theorem. Define a homomorphism

$$\phi \colon G \longrightarrow \mathbb{R}$$

by sending f to $\phi(f) = f(1/4)$. Suppose that f and $g \in G$. Then

$$\phi(f+g) = (f+g)(1/4)$$

= $f(1/4) + g(1/4)$
= $\phi(f) + \phi(g)$.

Thus ϕ is a homorphism. ϕ is clearly surjective. For example, given a real number a, let f be the constant function f(x) = a. Then $\phi(f) = f(1/4) = a$.

The kernel of ϕ consists of all functions that vanish at 1/4, that is N. Thus by the First Isomorphism Theorem, $G/N \simeq \mathbb{R}$.

Chapter 3, Section 7: 4. We first prove (a) and (c). Define a homomorphism

$$\phi\colon G\longrightarrow G_2,$$

by sending $g = (g_1, g_2)$ to g_2 . Suppose that $g = (g_1, g_2)$ and $h = (h_1, h_2)$ are in G. Then

$$\phi(gh) = \phi(g_1h_1, g_2h_2)$$

$$= g_2h_2$$

$$= \phi(g_1, g_2)\phi(h_1, h_2)$$

$$= \phi(g)\phi(h).$$

Thus ϕ is a homomorphism. ϕ is clearly surjective as given $g_2 \in G$, $\phi(e_1, g_2) = g_2$.

Suppose that $(g_1, g_2) \in \text{Ker } \phi$. Then $g_2 = e_2$. Thus $N = \text{Ker } \phi$. Hence (a). (c) follows from the First Isomorphism Theorem. To prove (b), define a homomorphism

$$f: N \longrightarrow G_1$$

by sending (g_1, e_2) to g_1 . This is clearly an isomorphism.

Chapter 3, Section 7: 6. By definition the order of a is the order of the subgroup $H = \langle a \rangle$ and the order of aN is the order of the subgroup $H' = \langle aN \rangle$. Now it is clear that H' is the image of H under the canonical homomorphism

$$u: G \longrightarrow G/N$$
.

So it suffices to prove that if we have a surjective homomorphism

$$\phi \colon H \longrightarrow H'$$

then the order of H' divides the order of H. But by the first isomorphism Theorem,

$$H' \simeq H/H''$$

where H'' is the kernel of ϕ . Thus the order of H' is the index of H'' in H, the number of left cosets of H'' in H, which by Lagrange divides the order of H.