MODEL ANSWERS TO THE SEVENTH HOMEWORK

1. For Chapter 2, Section 9: 1. Let ¢: Gy x Gy — G9 X G1 be
the homomorphism that sends (g1, g2) to (g2,¢91). This is clearly a

bijection. We check that it is a homomorphism. Suppose that (g1, g2)
and (hl,hQ) c G1 X GQ. Then

?((91, 92)(h1, b)) = ¢(g1h1, g2ho)
= (g2h2, g1h1)
= (g2, 91)(h2, h1)
= ¢(g1, 92)(ha, ha).

Thus ¢ is a homomorphism.

Alternatively, we could use the universal property of the product. Both
G1 x G5 and G5 x (G satisfy the universal properties of a product and
so they must be isomorphic, by uniqueness.

1. For Chapter 2, Section 9: 2. These properties are clearly preserved
by isomorphism, so we may as well assume that Gy = Z,, and Gy ~ Z,,.
Consider (1,1) € G; x Go. Suppose that k(1,1) = (0,0). Then k£ =0
mod m and £k = 0 mod n. As m and n are coprime it follows that
k =0 mod mn. But then the order of (1, 1) is at least mn. As G; x G
is a group of order mn, it follows that Gy x G5 is cyclic, generated by
(1,1).

Now suppose that m and n are not coprime. Suppose that [ = mn/d,
where d is a non-trivial divisor of both m and n (for example the ged).
Pick (a,b) € Zy, X Z. Then l(a,b) = (la,lb). But la is divisible by m
and so la = 0 mod m and (b is divisible by n so that (b = 0 mod n.
But then the order of (a,b) is at most [ and G x G5 is certainly not
cyclic.

1. For Chapter 2, Section 9: 3. Define a homomorphism

¢o: G—T

by the rule ¢(g) = (g,9). We check that this is a homomorphism.
Suppose that ¢ and h € G. Then

o(gh) = (gh, gh)

= (g’ g)(h’ h)
= ¢(9)9(h).
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Thus ¢ is a homomorphism. ¢ is clearly a bijection and so it is an
isomorphism.

Suppose that 7" is normal. Pick @ and b in G. Then (a,a) € T and the
conjugate of this element by (b, e) is also in 7. Thus

(b,e)(a,a)(b,e)™t = (bab~',a) € T

As this is an element of T, we have bab~! = a so that ba = ab. As a
and b are arbitrary, G is abelian.

Now suppose that G is abelian. Pick (g,¢9) € T and (a,b) € G x G.
Then

(a,b)(g, 9)(a, )" = (aga™, bgb™")
= (gaa™", gbb™")

=(9,9)-

Thus T' is normal.

2. Let h € H and k € K and let a = hkh™'k~!. As K is normal,
hkh™' € K, so that a = (hkh™')k~! € K. On the other hand, as H is
normal kh™'k™' € H and so a = h(kh™'k™') € H. Thusa € HNK
and so a = e. Thus hk = kh and h and k& commute.

3. Suppose that G is isomorphic to G’ x H’. Then we might as well
assume that G = H' x K’'. In this case take H = H' x {f} and
K' = {e} x K, where € is the identity of H" and f is the identity of K.
Let p be the projection of G down to H’. Then p is a homomorphism,
since this is part of the defining property of a categorical product. The
kernel is K, so that K is normal in G. Similarly H is normal in G.
Define a homomorphism

¢o: H — H

by sending h to (h,e). ¢ is clearly an isomorphism. Similarly K is
isomorphic to K’. Hence the first property.

Suppose that (a,b) € HN K. Then a = e and b = f so that (a,b) =
(e, f) is the identity of G. Hence the second property.

Suppose that (h', k') € G, where h' € H" and k' € K'. Then (W', k') =
(W, f)(e, k") = hk where h = (I, f) € H and k = (e, k') € K. Thus
(W,k') € HV K and G = H V K. Hence the third property.

Now suppose that (1)-(3) hold. Since H and K generate G, every
element of G is a product of elements of H and K. As H and K are
normal in G, the elements of H commute with the elements of K. Thus
it is easy to prove that H K is closed under products and inverses and

it follows that every element of GG is of the form hk so that G = HK.
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Define a homomorphism
¢:G— H X K,

by sending g = hk to (h, k). Suppose that hik, = hoky. Then hy'h; =
koki' € HN K. Thus hy'hy = koki! = e, the identity of G. Thus
hy = hy and k; = ky. Thus ¢ is well-defined.

The composition of ¢ with the two projection maps are the two iden-
tities, and these are both homomorphisms. By the universal property
of a product, it follows that ¢ is a homomorphism.

¢ is clearly surjective, and it is injective, as the kernel is clearly trivial.
Thus ¢ is an isomorphism and G is isomorphic to H x K. But H x K
is clearly isomorphic to H' x K’ and so we are done.

4. Bonus Challenge Problem. Let X be a set with three elements
{e,a,b}. Consider a binary operation x with the following multiplica-
tion table:

It is clear that e acts an identity and every element is its own inverse.
However (X, ) is not a group, since the second and third rows have
repeated entries. Since there are only three axioms for a group and two
of them hold, it must be the case that associativity fails.

For a concrete example, if we take x = a, y = a and z = b then

xx(y*xz) =ax(axb)
=ax*a
=e.
On the other hand,
(x*xy)*xz=(axa)xb
=exb
=b.

Either way, multiplication is not associative.



