MODEL ANSWERS TO THE SEVENTH HOMEWORK

1. For Chapter 2, Section 9: 1. Let $\phi: G_{1} \times G_{2} \longrightarrow G_{2} \times G_{1}$ be the homomorphism that sends $\left(g_{1}, g_{2}\right)$ to $\left(g_{2}, g_{1}\right)$. This is clearly a bijection. We check that it is a homomorphism. Suppose that $\left(g_{1}, g_{2}\right)$ and $\left(h_{1}, h_{2}\right) \in G_{1} \times G_{2}$. Then

$$
\begin{aligned}
\phi\left(\left(g_{1}, g_{2}\right)\left(h_{1}, h_{2}\right)\right) & =\phi\left(g_{1} h_{1}, g_{2} h_{2}\right) \\
& =\left(g_{2} h_{2}, g_{1} h_{1}\right) \\
& =\left(g_{2}, g_{1}\right)\left(h_{2}, h_{1}\right) \\
& =\phi\left(g_{1}, g_{2}\right) \phi\left(h_{1}, h_{2}\right) .
\end{aligned}
$$

Thus ϕ is a homomorphism.
Alternatively, we could use the universal property of the product. Both $G_{1} \times G_{2}$ and $G_{2} \times G_{1}$ satisfy the universal properties of a product and so they must be isomorphic, by uniqueness.

1. For Chapter 2, Section 9: 2. These properties are clearly preserved by isomorphism, so we may as well assume that $G_{1}=\mathbb{Z}_{m}$ and $G_{2} \simeq \mathbb{Z}_{n}$. Consider $(1,1) \in G_{1} \times G_{2}$. Suppose that $k(1,1)=(0,0)$. Then $k=0$ $\bmod m$ and $k=0 \bmod n$. As m and n are coprime it follows that $k=0 \bmod m n$. But then the order of $(1,1)$ is at least $m n$. As $G_{1} \times G_{2}$ is a group of order $m n$, it follows that $G_{1} \times G_{2}$ is cyclic, generated by $(1,1)$.
Now suppose that m and n are not coprime. Suppose that $l=m n / d$, where d is a non-trivial divisor of both m and n (for example the gcd). Pick $(a, b) \in \mathbb{Z}_{m} \times \mathbb{Z}_{n}$. Then $l(a, b)=(l a, l b)$. But $l a$ is divisible by m and so $l a=0 \bmod m$ and $l b$ is divisible by n so that $l b=0 \bmod n$. But then the order of (a, b) is at most l and $G_{1} \times G_{2}$ is certainly not cyclic.
2. For Chapter 2, Section 9: 3. Define a homomorphism

$$
\phi: G \longrightarrow T
$$

by the rule $\phi(g)=(g, g)$. We check that this is a homomorphism. Suppose that g and $h \in G$. Then

$$
\begin{aligned}
\phi(g h) & =(g h, g h) \\
& =(g, g)(h, h) \\
& =\phi(g) \phi(h) .
\end{aligned}
$$

Thus ϕ is a homomorphism. ϕ is clearly a bijection and so it is an isomorphism.
Suppose that T is normal. Pick a and b in G. Then $(a, a) \in T$ and the conjugate of this element by (b, e) is also in T. Thus

$$
(b, e)(a, a)(b, e)^{-1}=\left(b a b^{-1}, a\right) \in T
$$

As this is an element of T, we have $b a b^{-1}=a$ so that $b a=a b$. As a and b are arbitrary, G is abelian.
Now suppose that G is abelian. Pick $(g, g) \in T$ and $(a, b) \in G \times G$. Then

$$
\begin{aligned}
(a, b)(g, g)(a, b)^{-1} & =\left(a g a^{-1}, b g b^{-1}\right) \\
& =\left(g a a^{-1}, g b b^{-1}\right) \\
& =(g, g) .
\end{aligned}
$$

Thus T is normal.
2. Let $h \in H$ and $k \in K$ and let $a=h k h^{-1} k^{-1}$. As K is normal, $h k h^{-1} \in K$, so that $a=\left(h k h^{-1}\right) k^{-1} \in K$. On the other hand, as H is normal $k h^{-1} k^{-1} \in H$ and so $a=h\left(k h^{-1} k^{-1}\right) \in H$. Thus $a \in H \cap K$ and so $a=e$. Thus $h k=k h$ and h and k commute.
3. Suppose that G is isomorphic to $G^{\prime} \times H^{\prime}$. Then we might as well assume that $G=H^{\prime} \times K^{\prime}$. In this case take $H=H^{\prime} \times\{f\}$ and $K^{\prime}=\{e\} \times K$, where e is the identity of H^{\prime} and f is the identity of K^{\prime}. Let p be the projection of G down to H^{\prime}. Then p is a homomorphism, since this is part of the defining property of a categorical product. The kernel is K, so that K is normal in G. Similarly H is normal in G.
Define a homomorphism

$$
\phi: H^{\prime} \longrightarrow H
$$

by sending h to (h, e). ϕ is clearly an isomorphism. Similarly K is isomorphic to K^{\prime}. Hence the first property.
Suppose that $(a, b) \in H \cap K$. Then $a=e$ and $b=f$ so that $(a, b)=$ (e, f) is the identity of G. Hence the second property.
Suppose that $\left(h^{\prime}, k^{\prime}\right) \in G$, where $h^{\prime} \in H^{\prime}$ and $k^{\prime} \in K^{\prime}$. Then $\left(h^{\prime}, k^{\prime}\right)=$ $\left(h^{\prime}, f\right)\left(e, k^{\prime}\right)=h k$ where $h=\left(h^{\prime}, f\right) \in H$ and $k=\left(e, k^{\prime}\right) \in K$. Thus $\left(h^{\prime}, k^{\prime}\right) \in H \vee K$ and $G=H \vee K$. Hence the third property.
Now suppose that (1)-(3) hold. Since H and K generate G, every element of G is a product of elements of H and K. As H and K are normal in G, the elements of H commute with the elements of K. Thus it is easy to prove that $H K$ is closed under products and inverses and it follows that every element of G is of the form $h k$ so that $G=H K$.

Define a homomorphism

$$
\phi: G \longrightarrow H \times K
$$

by sending $g=h k$ to (h, k). Suppose that $h_{1} k_{1}=h_{2} k_{2}$. Then $h_{2}^{-1} h_{1}=$ $k_{2} k_{1}^{-1} \in H \cap K$. Thus $h_{2}^{-1} h_{1}=k_{2} k_{1}^{-1}=e$, the identity of G. Thus $h_{1}=h_{2}$ and $k_{1}=k_{2}$. Thus ϕ is well-defined.
The composition of ϕ with the two projection maps are the two identities, and these are both homomorphisms. By the universal property of a product, it follows that ϕ is a homomorphism.
ϕ is clearly surjective, and it is injective, as the kernel is clearly trivial. Thus ϕ is an isomorphism and G is isomorphic to $H \times K$. But $H \times K$ is clearly isomorphic to $H^{\prime} \times K^{\prime}$ and so we are done.
4. Bonus Challenge Problem. Let X be a set with three elements $\{e, a, b\}$. Consider a binary operation $*$ with the following multiplication table:

$*$	e	a	b
e	e	a	b
a	a	e	a
b	b	b	e

It is clear that e acts an identity and every element is its own inverse. However $(X, *)$ is not a group, since the second and third rows have repeated entries. Since there are only three axioms for a group and two of them hold, it must be the case that associativity fails.
For a concrete example, if we take $x=a, y=a$ and $z=b$ then

$$
\begin{aligned}
x *(y * z) & =a *(a * b) \\
& =a * a \\
& =e .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
(x * y) * z & =(a * a) * b \\
& =e * b \\
& =b .
\end{aligned}
$$

Either way, multiplication is not associative.

