MODEL ANSWERS TO THE SEVENTH HOMEWORK

1. For Chapter 2, Section 9: 1. Let $\phi: G_1 \times G_2 \longrightarrow G_2 \times G_1$ be the homomorphism that sends (g_1, g_2) to (g_2, g_1) . This is clearly a bijection. We check that it is a homomorphism. Suppose that (g_1, g_2) and $(h_1, h_2) \in G_1 \times G_2$. Then

$$\phi((g_1, g_2)(h_1, h_2)) = \phi(g_1h_1, g_2h_2)$$

= (g_2h_2, g_1h_1)
= $(g_2, g_1)(h_2, h_1)$
= $\phi(g_1, g_2)\phi(h_1, h_2).$

Thus ϕ is a homomorphism.

Alternatively, we could use the universal property of the product. Both $G_1 \times G_2$ and $G_2 \times G_1$ satisfy the universal properties of a product and so they must be isomorphic, by uniqueness.

1. For Chapter 2, Section 9: 2. These properties are clearly preserved by isomorphism, so we may as well assume that $G_1 = \mathbb{Z}_m$ and $G_2 \simeq \mathbb{Z}_n$. Consider $(1,1) \in G_1 \times G_2$. Suppose that k(1,1) = (0,0). Then k = 0mod m and $k = 0 \mod n$. As m and n are coprime it follows that $k = 0 \mod mn$. But then the order of (1,1) is at least mn. As $G_1 \times G_2$ is a group of order mn, it follows that $G_1 \times G_2$ is cyclic, generated by (1,1).

Now suppose that m and n are not coprime. Suppose that l = mn/d, where d is a non-trivial divisor of both m and n (for example the gcd). Pick $(a,b) \in \mathbb{Z}_m \times \mathbb{Z}_n$. Then l(a,b) = (la,lb). But la is divisible by mand so $la = 0 \mod m$ and lb is divisible by n so that $lb = 0 \mod n$. But then the order of (a,b) is at most l and $G_1 \times G_2$ is certainly not cyclic.

1. For Chapter 2, Section 9: 3. Define a homomorphism

$$\phi \colon G \longrightarrow T$$

by the rule $\phi(g) = (g, g)$. We check that this is a homomorphism. Suppose that g and $h \in G$. Then

$$\phi(gh) = (gh, gh)$$
$$= (g, g)(h, h)$$
$$= \phi(g)\phi(h).$$

Thus ϕ is a homomorphism. ϕ is clearly a bijection and so it is an isomorphism.

Suppose that T is normal. Pick a and b in G. Then $(a, a) \in T$ and the conjugate of this element by (b, e) is also in T. Thus

$$(b,e)(a,a)(b,e)^{-1} = (bab^{-1},a) \in T$$

As this is an element of T, we have $bab^{-1} = a$ so that ba = ab. As a and b are arbitrary, G is abelian.

Now suppose that G is abelian. Pick $(g,g) \in T$ and $(a,b) \in G \times G$. Then

$$(a,b)(g,g)(a,b)^{-1} = (aga^{-1}, bgb^{-1})$$

= (gaa^{-1}, gbb^{-1})
= $(g,g).$

Thus T is normal.

2. Let $h \in H$ and $k \in K$ and let $a = hkh^{-1}k^{-1}$. As K is normal, $hkh^{-1} \in K$, so that $a = (hkh^{-1})k^{-1} \in K$. On the other hand, as H is normal $kh^{-1}k^{-1} \in H$ and so $a = h(kh^{-1}k^{-1}) \in H$. Thus $a \in H \cap K$ and so a = e. Thus hk = kh and h and k commute.

3. Suppose that G is isomorphic to $G' \times H'$. Then we might as well assume that $G = H' \times K'$. In this case take $H = H' \times \{f\}$ and $K' = \{e\} \times K$, where e is the identity of H' and f is the identity of K'. Let p be the projection of G down to H'. Then p is a homomorphism, since this is part of the defining property of a categorical product. The kernel is K, so that K is normal in G. Similarly H is normal in G. Define a homomorphism

$$\phi \colon H' \longrightarrow H$$

by sending h to (h, e). ϕ is clearly an isomorphism. Similarly K is isomorphic to K'. Hence the first property.

Suppose that $(a, b) \in H \cap K$. Then a = e and b = f so that (a, b) = (e, f) is the identity of G. Hence the second property.

Suppose that $(h', k') \in G$, where $h' \in H'$ and $k' \in K'$. Then (h', k') = (h', f)(e, k') = hk where $h = (h', f) \in H$ and $k = (e, k') \in K$. Thus $(h', k') \in H \lor K$ and $G = H \lor K$. Hence the third property.

Now suppose that (1)-(3) hold. Since H and K generate G, every element of G is a product of elements of H and K. As H and K are normal in G, the elements of H commute with the elements of K. Thus it is easy to prove that HK is closed under products and inverses and it follows that every element of G is of the form hk so that G = HK.

Define a homomorphism

$$\phi \colon G \longrightarrow H \times K,$$

by sending g = hk to (h, k). Suppose that $h_1k_1 = h_2k_2$. Then $h_2^{-1}h_1 = k_2k_1^{-1} \in H \cap K$. Thus $h_2^{-1}h_1 = k_2k_1^{-1} = e$, the identity of G. Thus $h_1 = h_2$ and $k_1 = k_2$. Thus ϕ is well-defined.

The composition of ϕ with the two projection maps are the two identities, and these are both homomorphisms. By the universal property of a product, it follows that ϕ is a homomorphism.

 ϕ is clearly surjective, and it is injective, as the kernel is clearly trivial. Thus ϕ is an isomorphism and G is isomorphic to $H \times K$. But $H \times K$ is clearly isomorphic to $H' \times K'$ and so we are done.

4. Bonus Challenge Problem. Let X be a set with three elements $\{e, a, b\}$. Consider a binary operation * with the following multiplication table:

It is clear that e acts an identity and every element is its own inverse. However (X, *) is not a group, since the second and third rows have repeated entries. Since there are only three axioms for a group and two of them hold, it must be the case that associativity fails.

For a concrete example, if we take x = a, y = a and z = b then

$$x * (y * z) = a * (a * b)$$
$$= a * a$$
$$= e.$$

On the other hand,

$$(x * y) * z = (a * a) * b$$
$$= e * b$$
$$= b.$$

Either way, multiplication is not associative.