1. Give the definition of:
 (i) a group.
 (ii) an abelian group.
 (iii) the order of a group.
 (iv) a subgroup.
 (v) a proper subgroup.
 (vi) closed under multiplication.
 (vii) closed under inverses.
 (viii) an equivalence relation.
 (ix) an equivalence class.
 (x) a partition.
 (xi) a left coset.
 (xii) the index of a subgroup.
 (xiii) the subgroup generated by a subset S.
 (xiv) a finitely generated group.
 (xv) a cyclic group.

2. Show that a subset H of a group G is a subgroup if and only if H
 is non-empty, closed under multiplication and closed under inverses.

3. Let G be a group and let H and K be two subgroups.
 (i) Show that the intersection $H \cap K$ is a subgroup.
 (ii) Is the union $H \cup K$ a subgroup?

4. Give a description of the symmetry group of the square D_4 and find
 all of its subgroups. Pick one subgroup of each order and find its left
 cosets.

5. Prove Lagrange’s Theorem.

6. Show that every group of order a prime is abelian.