FINAL EXAM

MATH 109, UCSD, SPRING 17

You have three hours.

There are 10 problems, and the total number of points is 145 . Show all your work. Please make your work as clear and easy to follow as possible.

Name: \qquad
Signature: \qquad
Student ID \#: \qquad
Section instructor: \qquad
Section Time: \qquad

Problem	Points	Score
1	30	
2	10	
3	10	
4	10	
5	10	
6	10	
7	15	
8	20	
9	20	
10	10	
11	10	
12	10	
13	10	
14	10	
Total	145	

1. (30pts) (i) Give the definition of the absolute value of a real number.

If r is a real number and r is non-negative then the absolute value of r is r; if r is negative the absolute value is $-r$.
(ii) Give the definition of the difference of two sets.

If A and B are two sets the difference $A \backslash B$ is the set of elements of A which are not elements of B.
(iii) Give the definition of the symmetric difference of two sets.

If A and B are two sets the the symmetric difference is the union of $A \backslash B$ and $B \backslash A$.
(iv) Give the definition of a surjective function.

A function $f: A \longrightarrow B$ is surjective if for every $b \in B$ we may find $a \in A$ such that $f(a)=b$.
(v) Give the definition of a bijective function.
$f: A \longrightarrow B$ is a bijective function if f is injective and surjective.
(vi) Give the definition of an invertible function.
$f: A \longrightarrow B$ is an invertible function if there is a function $g: B \longrightarrow A$ such that $f \circ g=\operatorname{id}_{B}: B \longrightarrow B$ and $g \circ f=\operatorname{id}_{A}: A \longrightarrow A$.
2. (10pts) (i) Prove that $|r|^{2}=r^{2}$ for all real numbers r.

There are two cases. If $r \geq 0$ then $|r|=r$ and so

$$
|r|^{2}=r^{2}
$$

If $r<0$ then $|r|=-r$ and so

$$
\begin{aligned}
|r|^{2} & =(-r)^{2} \\
& =r^{2} .
\end{aligned}
$$

Either way, $|r|^{2}=r^{2}$.
(ii) Prove that if n is an integer then $n(n+1)$ is even.

There are two cases. If n is even then $n=2 k$. In this case

$$
n(n+1)=2 k(n+1)
$$

is even as $k(n+1)$ is an integer.
Now suppose that n is odd. Let

$$
A=\{a \mid a \text { is even and } a \leq n\} .
$$

Let m be the largest element of A and let $r=n-m$. Note that $m=2 k$, for some k. $r \geq 0$ as $m \leq n$. If $r=0$ then $m=n$ is odd, a contradiction. If $r \geq 2$ then $m+2=2 k+2=2(k+1)$ is even and $m+2 \leq m+r=n$ so that $m<m+2 \in A$. This contradicts the fact that m is the largest element of A. It follows that $r=1$.
Thus $n=2 k+1$. In this case

$$
\begin{aligned}
n(n+1) & =n(2 k+2) \\
& =2 n(k+1),
\end{aligned}
$$

is even, as $n(k+1)$ is an integer.
Either way, $n(n+1)$ is even.
3. (10pts) Let x and y be positive real numbers. Show that

$$
\sqrt{x y} \geq \frac{2}{\frac{1}{x}+\frac{1}{y}}
$$

We have

$$
(x-y)^{2}=|x-y|^{2} \geq 0
$$

Thus

$$
x^{2}-2 x y+y^{2} \geq 0
$$

Adding $4 x y$ to both sides we get

$$
(x+y)^{2}=x^{2}+2 x y+y^{2} \geq 4 x y .
$$

As x and y are positive real numbers, we have $x+y \geq 0$. Thus taking the square root of both sides

$$
x+y \geq 2 \sqrt{x y}
$$

Multiplying both sides by $\sqrt{x y}>0$ we have

$$
(x+y) \sqrt{x y} \geq 2 x y
$$

Dividing both sides by $x+y>0$ we have

$$
\sqrt{x y} \geq \frac{2 x y}{x+y}=\frac{2}{\frac{1}{x}+\frac{1}{y}}
$$

4. (10pts) Prove that

$$
n^{3} \leq 2^{n}
$$

for all integers $n \geq 10$.

Let $P(n)$ be the statement that

$$
n^{3} \leq 2^{n}
$$

We prove that $P(n)$ holds for all natural numbers n at least ten. If $n=10$ then the LHS is

$$
n^{3}=10^{3}=2^{3} \cdot 5^{3}
$$

and the RHS is

$$
2^{10}=2^{3} \cdot 2^{7}
$$

Now $5^{3}=125$ and $2^{7}=128$, so that the

$$
2^{3} \cdot 5^{3} \leq 2^{3} \cdot 2^{7}
$$

Thus $P(10)$ holds.
Suppose that $P(k)$ holds and $k \geq 9$. We check that $P(k+1)$ holds. We have

$$
\begin{aligned}
(k+1)^{3} & =k^{3}+3 k^{2}+3 k+1 \\
& \leq k^{3}+3 k^{2}+3 k^{2}+3 k^{2} \\
& =k^{3}+9 k^{2} \\
& \leq k^{3}+k^{3} \\
& \leq 2^{k}+2^{k} \\
& =2 \cdot 2^{k} \\
& =2^{k+1},
\end{aligned}
$$

where we used the fact that $P(k)$ holds to get from line four to line five. Thus $P(k+1)$ holds.
As we have checked that $P(10)$ holds and $P(k) \Longrightarrow P(k+1)$, mathematical induction implies that $P(n)$ holds for all $n \geq 10$, that is

$$
n^{3} \leq 2^{n}
$$

for all integers $n \geq 10$.
5. (10pts) If

$$
A \subset\{1,2,3, \ldots, n\}
$$

then prove that

$$
|A| \text { is even } \quad \text { if and only if } \quad|A \triangle\{1\}| \text { is odd. }
$$

First observe that n is even if and only if $n+1$ is odd.
Suppose that $|A|=m$.
There are two cases. If $1 \notin A$ then

$$
\begin{aligned}
A \triangle\{1\} & =A \backslash\{1\} \cup\{1\} \backslash A \\
& =A \cup\{1\} .
\end{aligned}
$$

In this case

$$
\begin{aligned}
|A \triangle\{1\}| & =\mid A \cup\{1\} \\
& =|A|+1 \\
& =m+1 .
\end{aligned}
$$

Thus $|A|$ is even if and only if $|A \triangle\{1\}|$ is odd If $1 \in A$ then

$$
\begin{aligned}
A \triangle\{1\} & =A \backslash\{1\} \cup\{1\} \backslash A \\
& =A \backslash\{1\} .
\end{aligned}
$$

In this case

$$
\begin{aligned}
|A \triangle\{1\}| & =\mid A \backslash\{1\} \\
& =|A|-1 \\
& =m-1 .
\end{aligned}
$$

As $m-1$ is even if and only if m is odd, it follows that $m-1$ is odd if and only if m is even. Thus $|A|$ is even if and only if $|A \triangle\{1\}|$ is odd Either way, $|A|$ is even if and only if $|A \triangle\{1\}|$ is odd.
6. (10pts) Prove or disprove:

$$
\forall \epsilon>0, \exists N \in \mathbb{Z},(n \geq N) \Longrightarrow \frac{1000}{n}<\epsilon
$$

This is true and so we prove it. Pick an integer N such that

$$
N>\frac{1000}{\epsilon} .
$$

If $n>N$ then

$$
\begin{aligned}
\frac{1000}{n} & =\frac{1000}{n} \cdot 1 \\
& =\frac{1000}{n} \cdot \frac{\epsilon}{\epsilon} \\
& =\frac{\epsilon}{n} \cdot \frac{1000}{\epsilon} \\
& <\epsilon \cdot \frac{N}{n} \\
& <\epsilon \cdot \frac{n}{n} \\
& =\epsilon \cdot 1 \\
& =\epsilon .
\end{aligned}
$$

7. (15pts) Let $f: A \longrightarrow B$ and $g: B \longrightarrow C$ be two functions.
(a) Show that if f and g are injective then $g \circ f$ is injective.

Suppose that $(g \circ f)\left(a_{1}\right)=g \circ f\left(a_{2}\right)$. Let $b_{i}=f\left(a_{1}\right)$. We have

$$
\begin{aligned}
g\left(b_{1}\right) & =g\left(f\left(a_{1}\right)\right) \\
& =(g \circ f)\left(a_{1}\right) \\
& =(g \circ f)\left(a_{2}\right) \\
& =g\left(f\left(a_{2}\right)\right) \\
& =g\left(b_{2}\right) .
\end{aligned}
$$

As g is injective, it follows that $b_{1}=b_{2}$. Therefore

$$
\begin{aligned}
f\left(a_{1}\right) & =b_{1} \\
& =b_{2} \\
& =f\left(a_{2}\right) .
\end{aligned}
$$

As f is injective, it follows that $a_{1}=a_{2}$. Therefore $g \circ f$ is injective.
(b) Show that if f and g are surjective then $g \circ f$ is surjective.

Suppose that $c \in C$. As g is surjective, we may find $b \in B$ such that $g(b)=c$. As f is surjective, we may find $a \in A$ such that $f(a)=b$. We have

$$
\begin{aligned}
(g \circ f)(a) & =g(f(a)) \\
& =g(b) \\
& =c .
\end{aligned}
$$

Thus $g \circ f$ is surjective.
(c) Show that if f and g are bijective then $g \circ f$ is bijective.

As f and g, f and g are injective and surjective. By (a), $g \circ f$ is injective and by (b) $g \circ f$ is surjective. But then $g \circ f$ is bijective.
8. (20pts) (a) If A, B and C are three sets then find a formula for $|A \cup B \cup C|$ and prove you formula is correct.

$$
|A \cup B \cup C|=|A|+|B|+|C|-|B \cap C|-|A \cap C|-|A \cap B|+|A \cap B \cap C| .
$$

We prove this by inclusion-exclusion. Suppose that $x \in A \cup B \cup C$. We consider how many times we count x, depending on where it lies. If x belongs to A but not B or C then x gets counted once as an element of A and it is not counted as any element of any other set on the RHS. If x belongs to $B \cap C$ but not A, it gets included once as an element of B, once as an element of C and excluded once as an element of $B \cap C$. If x belongs to $A \cap B \cap C$, it gets included three times, as elements of A, B and C, it gets excluded three times, as elements of $A \cap B, B \cap C$ and $A \cap C$ and it is included once as an element of $A \cap B \cap C$.
In all three cases, x is counted once in total. By symmetry x is always counted once. Thus the formula is correct.
(b) How many numbers between 1 and 10,000 are not divisible by at least one of 2,3 and 5 (you may use the standard properties of primes)?

Let A be the integers between 1 and 10,000 divisible by $2, B$ be the integers between 1 and 10,000 divisible by 3 and C be the integers between 1 and 10,000 divisible by 5 , so that

$$
\begin{aligned}
& A=\{k \in \mathbb{Z} \mid 1 \leq k \leq 10,000, k \text { is divisible by } 2\} \\
& B=\{k \in \mathbb{Z} \mid 1 \leq k \leq 10,000, k \text { is divisible by } 3\} \\
& C=\{k \in \mathbb{Z} \mid 1 \leq k \leq 10,000, k \text { is divisible by } 5\} .
\end{aligned}
$$

We use the formula in (a) to count the number of elements of $A \cup B \cup C$. These are the integers divisible by at least one of 2,3 , or 5 . Suppose that $a \in A$. Then we can find $k \in \mathbb{Z}$ such that $a=2 k$. As $1 \leq a \leq$ 10,000 , we have $1 \leq k \leq 5000$. Thus

$$
|A|=5000
$$

Similarly,

$$
|C|=2000
$$

Now $b \in B$ if and only if $b=3 k$, some integer k. As $1 \leq b \leq 10,000$, $1 \leq k \leq 3333$. Thus

$$
|B|=3333
$$

Now

$$
A \cap B=\{k \in \mathbb{Z} \mid 1 \leq k \leq 10,000, k \text { is divisible by } 6\}
$$

Thus $a \in A \cap B$ if and only if $a=6 k$ for some integer k. We have $1 \leq k \leq 1666$. Thus

$$
|A \cap B|=1666
$$

Similarly

$$
|A \cap C|=10,000 \quad \text { and } \quad|B \cap C|=666
$$

Finally,
$A \cap B \cap C=\{k \in \mathbb{Z} \mid 1 \leq k \leq 10,000, k$ is divisible by 30$\}$.
Thus $a \in A \cap B \cap C$ if and only if $a=30 k$ for some integer k. We have $1 \leq k \leq 333$. Thus

$$
|A \cap B \cap C|=333
$$

It follows that

$$
\begin{aligned}
|A \cup B \cup C| & =|A|+|B|+|C|-|B \cap C|-|A \cap C|-|A \cap B|+|A \cap B \cap C| \\
& =5000+3333+2000-1666-1000-666+333 \\
& =7334 .
\end{aligned}
$$

Thus the number of integers between 1 and 10,000 not divisible by one of 2,3 or 5 is

$$
7334 .
$$

9. (20pts) (a) Let k and n be natural numbers and suppose that $k \leq n$.

Prove that

$$
\binom{n+1}{k+1}=\binom{n}{k}+\binom{n}{k+1} .
$$

Recall that

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!} .
$$

We have

$$
\begin{aligned}
\binom{n}{k+1}+\binom{n}{k} & =\frac{n!}{(k+1)!(n-k-1)!}+\frac{n!}{k!(n-k)!} \\
& =\frac{n!}{k!(n-k-1)!}\left(\frac{1}{k+1}+\frac{1}{n-k}\right) \\
& =\frac{n!}{k!(n-k-1)!}\left(\frac{(n-k)+(k+1)}{(k+1)(n-k)}\right) \\
& =\frac{n!}{k!(n-k-1)!}\left(\frac{(n+1)}{(k+1)(n-k)}\right) \\
& =\frac{(n+1)!}{(k+1)!(n-k)!} \\
& =\binom{n+1}{k+1} .
\end{aligned}
$$

(b) If n is a natural number and x and y are indeterminates then prove that

$$
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}=\sum_{i+j=n}\binom{i+j}{i} x^{i} y^{j}
$$

Let $P(n)$ be the statement that we have equality above. We prove $P(n)$ holds for all natural numbers n by induction on n. If $n=0$ the LHS is

$$
(x+y)^{0}=1
$$

and the RHS is

$$
\begin{aligned}
\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k} & =\sum_{k=0}^{0}\binom{0}{k} x^{k} y^{0-k} \\
& =\binom{0}{0} x^{0} y^{0} \\
& =1
\end{aligned}
$$

As we have equality, $P(0)$ holds.
Now suppose that $P(m)$ holds. We check that $P(m+1)$ holds. We have

$$
\begin{aligned}
(x+y)^{m+1} & =(x+y)(x+y)^{m} \\
& =(x+y) \sum_{k=0}^{m}\binom{m}{k} x^{k} y^{m-k} \\
& =x \sum_{k=0}^{m}\binom{m}{k} x^{k} y^{m-k}+y \sum_{k=0}^{m}\binom{m}{k} x^{k} y^{m-k} \\
& =\sum_{k=0}^{m}\binom{m}{k} x^{k+1} y^{m-k}+\sum_{k=0}^{m}\binom{m}{k} x^{k} y^{m-k+1} \\
& =\sum_{k=1}^{m+1}\binom{m}{k-1} x^{k} y^{m-k+1}+\sum_{k=0}^{m}\binom{m}{k} x^{k} y^{m-k+1} \\
& =y^{m+1}+\sum_{k=1}^{m}\left(\binom{m}{k-1}+\binom{m}{k}\right) x^{k} y^{m-k+1}+x^{m+1} \\
& =\sum_{k=0}^{m+1}\binom{m+1}{k} x^{k} y^{m-k+1},
\end{aligned}
$$

where we use the inductive hypothesis to get from line one to line two and (a) to get from line seven to line eight. Thus $P(k+1)$ holds.

Thus $P(n)$ holds for all natural numbers n, by mathematical induction, that is

$$
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k} .
$$

10. (10pts) Prove that if A is a set then $|A|<2^{|A|}$.

The function

$$
g: A \longrightarrow \wp(A)
$$

which sends an element a of A to the singleton set which contains a,

$$
g(a)=\{a\}
$$

is easily seen to be injective.
Thus is the result does not hold then there is a surjection $f: A \longrightarrow$ $\wp(A)$. We will derive a contradiction.
Let

$$
B=\{a \in A \mid a \notin f(a)\}
$$

Then $B \subset A$ so that $B \in \wp(A)$. As f is surjective, it follows that we may find $b \in A$ such that $f(b)=B$.
There are two cases. First suppose that $b \in B$. Then $b \in f(b)$ so that $b \notin B$, by definition of B. This is a contradiction.
Otherwise $b \notin B$. Then $b \notin f(b)$ so that $b \in B$, by definition of B. This is a contradiction.
Either way we get a contradiction and so there is no surjective function. Thus the cardinality of the powerset is greater than the cardinality of A.

Bonus Challenge Problems

11. (10pts) Give a different proof of 9 (a).

We count the number of ways to pick $k+1$ objects from $n+1$ objects. Imagine one of the objects is red and the others n objects are blue. If we pick $k+1$ then either we pick the red object or we don't. If we do pick it then we have to pick k objects from the remaining n objects. There are

$$
\binom{n}{k}
$$

ways to do this.
If we don't pick the red object then we have to pick $k+1$ objects from the remaining n objects. There are

$$
\binom{n}{k+1}
$$

ways to do this.
Putting all of this together we get the formula:

$$
\binom{n+1}{k+1}=\binom{n}{k}+\binom{n}{k+1} .
$$

12. (10pts) Show that for all non-negative integers m and n we have

$$
F_{m+n+1}=F_{m} F_{n}+F_{m+1} F_{n+1} .
$$

where F_{n} is the Fibonacci sequence, $0,1,1,2,3,5,8, \ldots$.

See the lecture notes.
13. (10pts) Prove that \mathbb{R} is uncountable.

Suppose not, suppose that the real numbers are countable. Then there would be a surjective function $f: \mathbb{N} \longrightarrow(0,1)$. Then we get a list of all real numbers between 0 and $1, r_{0}, r_{1}, r_{2}, \ldots$, where $r_{i}=f(i)$. Imagine making an actual list of these numbers

$$
\begin{aligned}
r_{0} & =0 . a_{01} a_{02} a_{03} \cdots \\
r_{1} & =0 . a_{11} a_{12} a_{13} \ldots \\
\vdots & =\vdots \\
r_{n} & =0 . a_{n 1} a_{n 2} a_{n 3} \ldots .
\end{aligned}
$$

We construct another real number r,

$$
r=0 . a_{1} a_{2} a_{3} \ldots,
$$

as follows.
If the first digit a_{11} of r_{1} is not one then we let the first digit a_{1} of r be one. If the first digit a_{11} of r_{1} is one then we let the first digit a_{1} of r_{1} be two.
If the second digit a_{22} of r_{2} is not one then we let the second digit a_{2} of r be one. If the first digit a_{22} of r_{2} is one then we let the first digit a_{2} of r_{2} be two.
In general, we define the nth digit a_{n} of r as follows:

$$
a_{n}= \begin{cases}1 & \text { if } a_{n n} \neq 1 \\ 2 & \text { if } a_{n n}=1\end{cases}
$$

As f is surjective there is a natural number n such that $f(n)=r$, that is, $r=r_{n}$. Suppose that $n=0$. There are two cases. Either $m=0$ in which case by definition of $m, m_{0} \neq 0$. Or $m=1$ in which case $m_{0}=0$. Either way, $m \neq m_{0}$, which contradicts the fact that $r=r_{0}$. Thus $n \neq 1$.
Now suppose that $n>0$. What is the nth digit a_{n} of r_{n} ? If the nth digit is 1 then the nth digit of r_{n} is not equal to one. If the nth digit is 2 then the nth digit of r_{n} is equal to one. Either way, $a_{n} \neq a_{n n}$. This contradicts the fact that $r=r_{n}$.
Thus r does not belong to the list of real numbers. This contradicts the fact that f is surjective. Therefore the reals are uncountable.
14. (10pts) Prove that if $f: A \longrightarrow B$ and $g: B \longrightarrow A$ are injective then $|A|=|B|$.

See the lecture notes.

