HOMEWORK 5, DUE TUESDAY MAY 9TH

1. Write down the negation of the following propositions:
(a)

$$
\forall \epsilon>0, \exists \delta>0,|x-1|<\delta \Longrightarrow\left|x^{2}-1\right|<\epsilon
$$

(b)

$$
\forall \epsilon>0, \forall x \in \mathbb{R}, \exists n \in \mathbb{Z},|x-n|<\epsilon
$$

(c) Let α be an irrational number, that is, $\alpha \in \mathbb{R} \backslash \mathbb{Q}$,

$$
\forall \epsilon>0, \forall x \in \mathbb{R}, \exists m, n \in \mathbb{Z},|x-m-n \alpha|<\epsilon
$$

2. Prove or disprove:
(a)

$$
\exists x \in \mathbb{R}, \forall y \in \mathbb{R}, y^{2}>2017+x
$$

(b)

$$
\forall y \in \mathbb{R}, \exists x \in \mathbb{R}, y^{3}>2017+x
$$

(c)

$$
\exists x \in \mathbb{R}, \forall y \in \mathbb{R}, y^{3}>2017+x
$$

(d)

$$
\forall \epsilon>0, \exists N \in \mathbb{Z}, \quad(n \geq N) \Longrightarrow \frac{1000}{n}<\epsilon
$$

3. Prove that

$$
\forall L_{1}, L_{2} \in \mathbb{R} \quad\left(\left(\forall \epsilon>0,\left|L_{1}-L_{2}\right|<\epsilon\right) \Longrightarrow L_{1}=L_{2}\right)
$$

4. Using quantifiers, define what it means for a sequence x_{1}, x_{2}, \ldots to get closer and closer to a.
5. Define a sequence of rational numbers a_{1}, a_{2}, \ldots recursively by

$$
a_{n}= \begin{cases}2 & \text { if } n=1 \\ \frac{a_{n-1}}{2}+\frac{1}{a_{n-1}} & \text { if } n>1\end{cases}
$$

Prove that
(a) the sequence is bounded from below, by the square root of two.
(b) the sequence is strictly monotonic decreasing, that is, $a_{n+1}<a_{n}$ for all n.
Challenge problems/Just for fun:
(c) the infimum is the square root of two.
6. Write down predicates $P(n)$ of the integers, which use only quantifiers, addition and multiplication of integers, such that the set

$$
A=\{n \in \mathbb{Z} \mid P(n)\}
$$

(i) consists of all powers of 2 ,

$$
A=\left\{ \pm 2^{k} \mid k \in \mathbb{Z}\right\} .
$$

(ii) consists of all powers of 5 ,

$$
A=\left\{ \pm 5^{k} \mid k \in \mathbb{Z}\right\} .
$$

(iii) consists of all powers of 10 ,

$$
A=\left\{ \pm 10^{k} \mid k \in \mathbb{Z}\right\}
$$

(this appears in GEB: parts (i) and (ii) are not so bad, but I have no idea how to solve part (iii)).
7. How many people do you need to invite to a dinner party to ensure that at least three people will be mutual acquaintances, or at least three people will be mutual strangers? As you don't have a big table, you want to find the smallest number of people you can invite while still satisfying these conditions.
8. Find

$$
\sqrt{7+\sqrt{7+\sqrt{7+\sqrt{7+\ldots}}}}
$$

and

$$
\sqrt{1+2 \sqrt{1+3 \sqrt{1+4 \sqrt{\cdots}}}}
$$

