HOMEWORK 7, DUE TUESDAY MAY 23RD

1. Let X be a finite set, and let A, B and $A_{1}, A_{2}, \ldots, A_{n}$ be subsets of X. Let $A^{c}=X \backslash A$ denote the complement.
(a) What is

$$
\sum_{x \in X} \chi_{A}(x) ?
$$

(b) Use part (a) and the formulas you have proved about characteristic functions to conclude that

$$
|A \cup B|=|A|+|B|-|A \cap B| .
$$

(c) Prove that

$$
(A \cup B)^{c}=A^{c} \cap B^{c} .
$$

(d) Prove that

$$
\chi_{\left(\cup_{i=1}^{n} A_{i}\right)^{c}}=\prod_{i=1}^{n}\left(1-\chi_{A_{i}}\right)
$$

Here

$$
\bigcup_{i=1}^{n} A_{i}
$$

is the union of the sets $A_{1}, A_{2}, \ldots, A_{n}$ and

$$
\prod_{i=1}^{n} a_{i}
$$

denotes the product of the numbers $a_{1}, a_{2}, \ldots, a_{n}$.
(e) Prove that

$$
\begin{aligned}
\chi_{\left(\cup_{i=1}^{n} A_{i}\right)^{c}} & =\sum_{k=0}^{n}(-1)^{k} \sum_{i_{1}<i_{2}<i_{3}<\cdots<i_{k}} \chi_{\cap=1}^{k} A_{i_{j}} \\
& =1-\left(\chi_{A_{1}}+\cdots+\chi_{A_{n}}\right)+\left(\chi_{A_{1} \cap A_{2}}+\cdots+\chi_{A_{n-1} \cap A_{n}}\right)+\cdots+(-1)^{n} \chi_{A_{1} \cap A_{2} \cdots \cap A_{n}} .
\end{aligned}
$$

Here the second sum runs over all k tuples of distinct integers from 1 to n.
(f) Conclude that

$$
\left|\bigcup_{i=1}^{n} A_{i}\right|=\sum_{k=1}^{n}(-1)^{k-1} \sum_{\substack{1 \leq i_{1}<i_{2}<i_{3}<\cdots<i_{k} \leq n \\ 1}}\left|\bigcap_{j=1}^{k} A_{i_{j}}\right| .
$$

2. (a) Write out the formula from 1 (f) in the case when $k=3$ and $A=A_{1}, B=A_{2}$ and $C=A_{3}$.
(b) How many integers between 1 and 1000 are not divisible by at least one of 2,3 or 5 ? You may use the fact that the integer n is divisible by
(i) 2 and 3 if and only if it is divisible by 6 ,
(ii) 2 and 5 if and only if it is divisible by 10 ,
(iii) 3 and 5 if and only if it is divisible by 15 ,
(iv) 2,3 and 5 if and only if it is divisible by 30 .

3 . Let $f: A \longrightarrow B$ be a function. Prove that
(a) f is injective if and only if either A is the emptyset or there is a function $g: B \longrightarrow A$ such that $g \circ f=\operatorname{id}_{A}: A \longrightarrow A$.
(b) f is surjective if and only if there is a function $g: B \longrightarrow A$ such that $f \circ g=\operatorname{id}_{B}: B \longrightarrow B$.
4. Suppose that $f: A \longrightarrow B$ and $g: B \longrightarrow C$ are two functions such that $g \circ f: A \longrightarrow C$ is a bijection.
Show that f is surjective if and only if g is injective.
Challenge problems/Just for fun:
5. (a) Let $G=(V, E)$ be a graph. Show that the degree function $d: V \longrightarrow \mathbb{N}$ is injective if and only if the number n of vertices is at most one.
(b) Classify all graphs G such that d misses at most one integer between 0 and $n-1$.

