HOMEWORK 8, DUE TUESDAY MAY 30TH

1. Prove the binomial theorem by induction on n : if n is a natural number and x and y are indeterminates then

$$
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}=\sum_{i+j=n}\binom{i+j}{i} x^{i} y^{j}
$$

2. Let A and B be two finite sets. Let B^{A} denote the set of all functions from A to B.
(a) Prove that

$$
\left|B^{A}\right|=|B|^{|A|}
$$

(b) Let $I \subset B^{A}$ denote the subset of all injective functions from A to B. Show that

$$
|I|=n(n-1) \ldots(n-m+1),
$$

where $n=|B|$ and $m=|A|$.
3. (a) Show that any two open intervals $(a, b) \subset \mathbb{R}$ and $(c, d) \subset \mathbb{R}$, where $a<b$ and $c<d$ are real numbers, have the same cardinality.
(b) Show that $(0,1)$ has the same cardinality as \mathbb{R} (Hint: consider rational functions). Just write down a function that is a bijection; there is no need to prove your function is a bijection.
(c) Show that any open interval $(a, b) \subset \mathbb{R}$ where $a<b$ are real numbers, has the same cardinality as the real numbers.
4. Are the following functions injective or surjective? Justify your answers.
(a)

$$
f: \mathbb{Z} \times \mathbb{Z} \longrightarrow \mathbb{Z} \quad \text { given by } \quad f(a, b)=3 a-2 b
$$

(b) If $A \subset X$ are two sets, define

$$
l: \wp(X) \longrightarrow \wp(X) \quad \text { by the rule } \quad l(B)=A \triangle B
$$

(c) If $Y \subset X$ is a non-empty subset, then define

$$
r: \wp(X) \longrightarrow \wp(Y) \quad \text { by the rule } \quad r(B)=Y \cap B
$$

5. Let I be the set of integers from 1 to n.
$X_{E}=\{A \in \wp(I)| | A \mid$ is even $\} \quad$ and $\quad X_{O}=\{A \in \wp(I)| | A \mid$ is odd $\}$
(a) Show that we may define maps

$$
f_{1}: X_{E} \longrightarrow X_{O} \quad \text { and } \quad f_{2}: X_{O} \longrightarrow X_{E}
$$

by the common rule

$$
A \longrightarrow A \triangle\{1\}
$$

(b) Show that X_{E} and X_{O} have the same cardinality.

Challenge problems/Just for fun:
6. Show that
(a)

$$
\sum_{k=0}^{n}\binom{n}{k}=2^{n}
$$

(b)

$$
\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}=0
$$

7. Let X be any set. Show that X and 2^{X} never have the same cardinality.
