HOMEWORK 9, DUE TUESDAY JUNE 6TH

1. (a) Prove that if A and B have the same cardinality then $\wp(A)$ and $\wp(B)$ have the same cardinality.
(b) Prove that if A_{1} and A_{2} have the same cardinality and B_{1} and B_{2} have the same cardinality, and $A_{1} \cap B_{1}=A_{2} \cap B_{2}=\emptyset$ then $A_{1} \cup B_{1}$ has the same cardinality as $A_{2} \cup B_{2}$.
(c) Prove that if A_{1} and A_{2} have the same cardinality and B_{1} and B_{2} have the same cardinality then $A_{1} \times B_{1}$ has the same cardinality as $A_{2} \times B_{2}$.
2. Let $n \in P$ be a positive integer.
(a) Prove that there is a unique natural number m such that

$$
2^{m} \leq n<2^{m+1}
$$

(b) Prove that there are unique distinct natural numbers $m_{1}, m_{2}, \ldots, m_{k}$ such that

$$
n=2^{m_{1}}+2^{m_{2}}+\cdots+2^{m_{k}} .
$$

(c) Let

$$
X=\{A \in \wp(\mathbb{N}) \mid A \text { is finite }\}
$$

Show that X is countable.
3. Let a and b be two integers and assume that $a \neq 0$. Show that there are unique integers q and r such that

$$
b=q a+r,
$$

where $0 \leq r<|a|$.
Challenge problems/Just for fun:
4. Let A and B be two finite sets. Let B^{A} denote the set of all functions from A to B. Suppose that $m=|A|$ and $n=|B|$. Let $S \subset B^{A}$ denote the subset of all surjective functions from A to B. Give a formula for the cardinality of S and prove it is correct.

