14. Composition of Functions

One of the most important thing we can do with functions is compose them:

Definition 14.1. Let $f: A \longrightarrow B$ and $g: B \longrightarrow C$ be two functions. The composition of f and g is a function from A to C, denoted $g \circ f: A \longrightarrow C$, defined by the rule:

$$
(g \circ f)(a)=g(f(a))
$$

Note that to compose two functions f and g, in that order, the range of f must equal the domain of g.

Example 14.2. Suppose that

$$
A=\{a, b, c\}, \quad B=\{0,1\} \quad \text { and } \quad C=\{\alpha, \beta, \gamma\} .
$$

Let

$$
f: A \longrightarrow B \quad \text { and } \quad g: B \longrightarrow C
$$

be the functions
$f(a)=0 \quad f(b)=1 \quad f(c)=0 \quad g(0)=\gamma \quad$ and $\quad g(1)=\beta$.
Then the composition of f and g is the function

$$
g \circ f: A \longrightarrow C
$$

given by
$(g \circ f)(a)=g(0)=\gamma \quad(g \circ f)(b)=g(1)=\beta \quad$ and $\quad(g \circ f)(c)=g(0)=\gamma$.
Note that

$$
g \circ f \neq f \circ g
$$

in general. In fact, in the example above $f \circ g$ does not even make sense, so not only is the equation not valid,

$$
g \circ f=f \circ g
$$

the RHS is not even defined.
If $f: A \longrightarrow B$ and $g: B \longrightarrow A$ then the composition either way is defined so that both sides of the equation

$$
g \circ f=f \circ g
$$

makes sense. However the LHS is a function $g \circ f: A \longrightarrow A$ and the RHS is a function $f \circ g: B \longrightarrow B$, so the two functions are different (at least unless $A=B$).

One reason you can compose either way and get the same domain and range is if $A=B=C$. But even then the composition either way might not be the same.

Example 14.3. Suppose that

$$
A=\{a, b\} .
$$

Let

$$
f: A \longrightarrow A \quad \text { and } \quad g: A \longrightarrow A
$$

be the functions

$$
f(a)=a \quad f(b)=a \quad g(a)=b \quad \text { and } \quad g(b)=b .
$$

So f is the constant function which sends everything to a and g is the constant function which sends everything to b. Then $g \circ f$ is the constant function which sends everything to b and $f \circ g$ is the constant function which sends everything to a. In particular

$$
g \circ f \neq f \circ g
$$

even though both sides make sense, and they have the same domain and range.

The identity function has one very special property with respect to composition:
Lemma 14.4. If $f: A \longrightarrow B$ is any function then

$$
f \circ i d_{A}=f: A \longrightarrow B \quad \text { and } \quad i d_{B} \circ f=f: A \longrightarrow B
$$

Proof. We first show that

$$
f \circ \operatorname{id}_{A}=f
$$

Both sides are functions from A to B. Therefore it suffices to show they have the same effect on any element of A. If $a \in A$ then

$$
\begin{aligned}
\left(f \circ \mathrm{id}_{A}\right)(a) & =f\left(\operatorname{id}_{A}(a)\right) \\
& =f(a) .
\end{aligned}
$$

Thus

$$
f \circ \operatorname{id}_{A}=f
$$

Now we show that

$$
\operatorname{id}_{B} \circ f=f
$$

Both sides are functions from A to B. Therefore it suffices to show they have the same effect on any element of A. If $a \in A$ then

$$
\begin{aligned}
\left(\operatorname{id}_{B} \circ f\right)(a) & \left.=\operatorname{id}_{B}(f(a))\right) \\
& =f(a) .
\end{aligned}
$$

Definition 14.5. Let $f: A \longrightarrow B$ be a function.
We say that f is invertible if there is a function $g: B \longrightarrow A$ such that $g \circ f=i d_{A}: A \longrightarrow A$ and $f \circ g=i d_{B}: B \longrightarrow B$. In this case we call g the inverse of A.

Example 14.6. If

$$
A=\{a, b\}, \quad B=\{0,1\}
$$

and $f: A \longrightarrow B$ is the function given by $f(a)=0, f(b)=1$ then f is invertible with inverse $g: B \longrightarrow A$ given by $g(0)=a$ and $g(1)=b$.

Note that f sets up a correspondence between the elements of A and the elements of B. In particular, if A and B are finite sets then A and B have the same cardinality.
Definition 14.7. We say two sets A and B have the same cardinality, denoted $|A|=|B|$, if there is an invertible function $f: A \longrightarrow B$.

