
17. Counting: infinite sets

We recall the definition of the cardinality:

Definition 17.1. We say two sets A and B have the same cardinal-
ity, denoted |A| = |B|, if there is a bijection f : A −→ B.

In fact, the original definition said that f is invertible. But now we
know that invertible and bijective are the same. So far we have focused
our attention on finite sets. We make some basic observations about
the cardinality of a set, which justify the use of the equals sign.

Lemma 17.2. Let A, B and C be three sets.

(1) |A| = |A|.
(2) If |A| = |B| then |B| = |A|.
(3) If |A| = |B| and |B| = |C| then |A| = |C|.

Proof. For (1) note that the identity idA : A −→ A is a bijection.
For (2), by assumption |A| = |B|. Therefore there is a bijection

f : A −→ B. As f is a bijection f is invertible. Let g : B −→ A be the
inverse of f . Note that f is the inverse of g; indeed g ◦ f = idA and
f ◦ g = idB. Thus g is invertible. Thus |B| = |A|.

For (3), assume that |A| = |B| and |B| = |C|. Then we may find
bijections f : A −→ B and g : B −→ C. As f : A −→ B is a bijection
and g : B −→ C is a bijection then g ◦ f : A −→ C is a bijection. But
then |A| = |C|. �

Example 17.3. The even integers and odd integers have the same
cardinality.

One way to show this is simply to show that the even integers have
the same cardinality as the integers and the odd integers have the same
cardinality as the integers and then use (17.2).

Let

E = {n ∈ Z |n is even } and O = {n ∈ Z |n is odd }.
Define a map

f : Z −→ E by the rule f(k) = 2k.

We check that f is a bijection. Suppose that n ∈ E. Then n is an even
integer and so we can find an integer k such that n = 2k. But then
f(k) = n and so f is surjective.

Now we check that f is injective. Suppose that f(k1) = f(k2). Then
2k1 = 2k2. But then 2(k1 − k2) = 0. But then k1 − k2 = 0 and so
k1 = k2. Thus f is injective.

It follows that f is a bijection and so |Z| = |E|.
1



Define a map

f : Z −→ O by the rule f(k) = 2k + 1.

We check that f is a bijection. Suppose that n ∈ O. Then n is an odd
integer and so we can find an integer k such that n = 2k+ 1. But then
f(k) = n and so f is surjective.

Now we check that f is injective. Suppose that f(k1) = f(k2). Then
2k1 + 1 = 2k2 + 1 so that 2k1 = 2k2. But then 2(k1 − k2) = 0. But
then k1 − k2 = 0 and so k1 = k2. Thus f is injective.

It follows that f is a bijection and so |Z| = |O|. In particular |E| =
|O|.

We can also exhibit an explicit bijection

f : E −→ O by the rule f(n) = n + 1.

We check that f is a bijection. Suppose that m ∈ O. Then m is an
odd integer and so we can find an even integer n such that m = n+ 1.
But then f(n) = m and so f is surjective.

Now we check that f is injective. Suppose that f(n1) = f(n2). Then
n1 + 1 = n2 + 1 so that n1 = n2. Thus f is injective. It follows that f
is a bijection and so |E| = |O|.
Definition 17.4. Let A be a set. We say that A is countable if either
A is finite or |A| has the same cardinality as the integers.

So far we have seen that the integers, the odd integers and the even
integer are infinite countable sets.

Lemma 17.5. The natural numbers and the positive integers have the
same cardinality.

Proof. Let P be the set of positive integers. Define

f : N −→ P by the rule f(n) = n + 1.

We check that f is bijection. We check that f is injective. Suppose
that f(n1) = f(n2). Then n1+1 = n2+1. But then n1 = n2. Therefore
f is injective. Now we check that f is surjective. Suppose that p ∈ P .
Then P is a positive integer, so that p ≥ 1. It follows that p − 1 ≥ 0.
Let n = p − 1. Then f(n) = n + 1 = p. Thus f is surjective. Thus f
is a bijection. �

There is a curious feature of (17.5). Suppose we modify the function
f defined in (17.5) in a very small way. Let

h : N −→ N
be the function h(n) = n + 1. Then h is injective but not surjective.
There is nothing mapping to zero. One way to picture all of this is
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in terms of a hotel. Suppose someone arrives at the hotel and asks if
there is a vacancy. The receptionist replies there is always a vacancy,
even if the hotel is fully occupied. The person in room zero moves to
room one, in room two to room three, and so on, ad infinitum.

Lemma 17.6. The natural numbers are countable.

Proof. Define
f : Z −→ N

by the rule

f(n) =

{
2n if n is non-negative

−1− 2n if n is negative.

We check that f is a bijection. We first check that f is surjective.
Suppose that m ∈ N. There are two cases. If m is even then we may
find n such that m = 2n. Note that n ≥ 0 so that f(n) = 2n = m. If
m is odd then m = 2k + 1 = 2(k + 1)− 1. Let n = −k − 1. As m ≥ 1,
k ≥ 0 and so n < 0. Thus f(n) = −1− 2n = 2(k + 1)− 1 = m. Either
way, we may find n such that f(n) = m and so f is surjective.

Now we check that f is injective. Suppose that f(n1) = f(n2). There
are two cases. Suppose that n1 ≥ 0. Then f(n1) = 2n1 = m is even.
If n2 < 0 then f(n2) is odd and so n2 ≥ 0. But then 2n1 = 2n2 and so
n1 = n2. Now suppose that n1 < 0. Then m = f(n1) = −1 − 2n1 is
odd. If n2 ≥ 0 then f(n2) is even and so n2 < 0. But then −1− 2n1 =
−1 − 2n2 and so n1 = n2. Either way, n1 = n2 and so f is injective.
Thus f is a bijection. �
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