
20. Well-orderings

There is an obvious counterpart to (18.2).

Conjecture 20.1. Let f : A −→ B and g : B −→ A be two surjective
functions.

Then |A| = |B|.

Axiom 20.2 (Axiom of choice). If Ai, i ∈ I, is a set of non-empty
sets then we can pick an element of each Ai.

Theorem 20.3 (Kurt Gödel). There is a model of set theory in which
the axiom of choice holds.

Theorem 20.4 (Paul Cohen). There is a model of set theory in which
the axiom of choice is false.

It turns out that the axiom of choice is equivalent to many other rea-
sonable looking axioms of set theory, such as (20.1). In practice, math-
ematicians assume the axiom of choice holds. The resulting model of
set theory is called ZFC (Zermelo-Fraenkel, plus the axiom of choice).
For example, the axiom of choice is equivalent to the statement that
every surjective function f : A −→ B has a right inverse, a function
g : B −→ A such that f ◦g = idB. In fact this right inverse is automat-
ically injective, so the existence of surjective functions both ways, plus
the axiom of choice, implies the existence of injective functions both
ways and by (18.2) this implies there is a bijection.

Definition 20.5. Let X be a set. A relation R on X, is a subset of
X ×X.

It is customary to write xRy, which reads x is related to y, if (x, y) ∈
R ⊂ X ×X.

Definition 20.6. A relation ≤ on X is called a partial order if ≤ is

(1) reflexive, that is, x ≤ x for every x ∈ X,
(2) anti-symmetric, that is, if x ≤ y and y ≤ x then x = y, for

every x and y, and
(3) ≤ is transitive, that is, if x ≤ y and y ≤ z then x ≤ z.

A partial order is called a total order, if in addition either x ≤ y
or y ≤ x for every pair of elements of X.

Example 20.7. The usual ordering of the real numbers is a total order.

Example 20.8. Let A be a set and let X be the powerset of A. Define
a relation on the elements of X, that is, the subsets of A, by the rule

B ≤ C if and only if B ⊂ C.
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This relation is a partial order of X. It is almost never a total
ordering. For example if

A = { b, c }
then B = {b} and C = {c} are not comparable.

Definition 20.9. We say that a total order (X,≤) is a well-ordering
if every non-empty subset Y ⊂ X has a minimal element.

Principle 20.10 (Well-ordering principle). The natural numbers are
well-ordered, under the usual ordering.

We accept the well-ordering principle. In fact, much more is true:

Theorem 20.11. The well-ordering principle and the principle of math-
ematical induction are equivalent.

Proof. We first check that the well-ordering principle implies the prin-
ciple of mathematical induction.

Let P (n) be a statement about the natural numbers, such that

(1) P (0) holds.
(2) If P (n) holds then P (n+ 1) holds.

We have to check that P (n) holds for all natural numbers. Let

A = {n ∈ N |P (n) does not hold }.
Suppose A is not empty. By the well-ordering principle, A contains
a minimal element m. m 6= 0 as P (0) holds by assumption. Thus
m = n + 1, for some natural number n. As n < m, and m is the
smallest element of A, n /∈ A, so that P (n) holds. Therefore P (n+ 1)
holds. Therefore P (m) holds. Therefore m /∈ A, a contradiction.

Thus A is empty and so P (n) holds for every n. Thus the well-
ordering principle implies the principle of mathematical induction.

Now we check the other direction. We suppose that the principle of
mathematical induction holds and we need to check the well-ordering
principle holds.

Let P (n) be the statement that if A ⊂ N contains m ≤ n then A
contains a minimal element. We want to prove that P (n) holds for all
natural numbers n.

Suppose that n = 0. Then A contains a natural number m ≤ 0. In
this case m = 0 and m is clearly a minimal element of A. Thus P (0)
holds.

Suppose that P (k) holds. We check that P (k + 1) holds. Suppose
that A ⊂ N contains m ≤ k + 1. There are two cases. Suppose that
m ≤ k. As P (k) holds, it follows that A contains a minimal element.
Otherwise m = k+ 1. If there is no smaller element of A then m is the
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minimal element. If there is a smaller element l then l < m ≤ k+ 1 so
that l ≤ k. As P (k) holds, A contains a minimal element.

As we checked that P (0) holds and that P (k) =⇒ P (k + 1) for
every integer k, it follows that P (n) holds for every n, by the principle
of mathematical induction.

Let A ⊂ N be a non-empty subset. Then A contains a natural
number n. As P (n) holds, A contains a minimal element. Thus the
principle of mathematical induction implies the well-ordering principle.

�

One can use (20.11) in practice. Instead of checking the hypothe-
sis of mathematical induction sometimes it is more straightforward to
consider a putative minimal counterexample and show it cannot exist.

It is interesting to consider which sets admit well-orderings. For
example, consider the rational numbers. The rational numbers with
the usual ordering is not a well-ordered set. Indeed,

Z ⊂ Q

does not contain a minimal element. It is more interesting to consider
the non-negative rational numbers, but even this set is not well-ordered.
Consider the set

(0, 1) ∩Q.
This contains the numbers

1/2 1/3 1/4 1/5 . . . .

The infimum is zero but this is not an element of the set. So there is
no minimal element.

On the other hand, the rationals are countable. The natural numbers
are well-ordered under the usual ordering and we can transfer this
ordering to the rational numbers, to get a well-ordering of the rational
numbers.

In fact the problem of putting a well-ordering on a set, just depends
on the cardinality of the set.

Axiom 20.12. Every set can be well-ordered.

In fact (20.12) is equivalent to the axiom of choice. Even finding a
well-ordering of the reals seems hard.

Definition 20.13. An ordinal α is a set whose elements are well-
ordered by the relation

x < y if and only if x ∈ y.
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Any natural number, considered as a set, is an ordinal. The set of all
natural numbers, ω, is an ordinal. It is not hard to check two things.
If α is an ordinal then so is α+. The union of a set of ordinals, is an
ordinal. It is natural to defined

β = α + 1 = α+.

We call β a successor ordinal. By contrast ω is the union of all natural
numbers. It is easy to see that ω is not a successor ordinal. We call any
ordinal which is not a successor ordinal, a limite ordinal. Note that

ω = { 0, 1, 2, 3, . . . , }.
By contrast

ω + 1 = ω+ = { 0, 1, 2, 3, . . . , ω }.
Clearly there is no reason to stop there,

ω + 2 = (ω + 1)+ = { 0, 1, 2, 3, . . . , ω, ω + 1 }.
It is interesting to note that

1 + ω = ω.

If you put 1 at the beginning then you don’t change the ordinal type.
In general, we can construct ω + n, for all natural numbers n. If we

take the limit of all of these numbers we get a new limit ordinal

ω2 =
⋃
n∈N

ω + n.

As a set
ω2 = { 0, 1, 2, 3, . . . , ω, ω + 1, ω + 2, . . . }

Note that 2ω = ω has the same ordering type as ω.
We can keep going from here. We can construct

ω3, ω4, . . . , ωn.

Taking the union we get
ω2 = ωω.

We can keep going from here. We can construct

ω2, ω3, ω4, . . . , ωn.

Taking the union we get
ωω.

We can keep going from here. We can construct

ωω, ωω
ω

, . . . .

Taking the union we get
ωω

ω...
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Note that all of the infinite ordinals we have constructed so far are
countable. If we look at the set of all countable ordinals, this is a new
ordinal

ω1 = {α |α is a countable ordinal }.
ω1 is not countable (by the axiom of foundation; if it were it would be
an element of itself). The corresponding cardinal is called

ℵ1.
In fact there is no reason to stop here. Given an ordinal α it is possible
to construct

ωα.

If α = β+1 is a successor ordinal then it is the set of all ordinals whose
cardinality is the same as β,

ωα = { γ | γ has cardinality ℵβ }.
The axiom of choice says that every cardinal arises in this way.

Conjecture 20.14 (Generalised Continuum hypothesis). There are no
cadinals

ℵα+1 = 2ℵα .

Around sixty years after Cantor made this conjecture, the following
was proved:

Theorem 20.15 (Kurt Gödel). There is a model of set theory in which
the generalised continuum hypothesis is true.

Theorem 20.16. Let α be a successor ordinal.
There is a model of set theory in which

2ℵ0 = ℵα
In other words, not only does the continuum hypothesis fail, it fails

in every conceivable fashion.
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