21. Rational and Irrationals

We have already seen that Cantor proved that there are irrational numbers simply by counting; the rationals are countable and the reals are not.

Theorem 21.1. $\sqrt{2}$ is irrational.
Proof. Suppose not. Then we may integers a and $b, b \neq 0$ such that

$$
\frac{a}{b}=\sqrt{2} .
$$

If a is negative then b is negative as well. If we replace a by $-a$ and b by $-b$ we reduce to the case that both a and b are positive integers.

If we multiply through by b then we get

$$
a=b \sqrt{2}
$$

Squaring both sides we get

$$
a^{2}=2 b^{2}
$$

As the RHS is even, the LHS is even as well.
Suppose that a is odd. Then there is an integer k such that $a=2 k+1$. In this case

$$
\begin{aligned}
a^{2} & =(2 k+1)^{2} \\
& =4 k^{2}+4 k+1 \\
& =2\left(2 k^{2}+2 k\right)+1 \\
& =2 l+1,
\end{aligned}
$$

where $l=\left(2 k^{2}+2 k\right)$ is an integer. It follows that a^{2} is odd. As the RHS is even, this is impossible.

Thus a is even. It follows that there is an integer c such that $a=2 c$. In this case

$$
a^{2}=4 c^{2},
$$

and so

$$
4 c^{2}=2 b^{2}
$$

Cancelling a factor of 2 , we get

$$
2 c^{2}=b^{2}
$$

We started with an expression of the form $a^{2}=2 b^{2}$ and we derived a new relation of the form $2 c^{2}=b^{2}$. Note that $b<a$.

Let
$A=\left\{a \in \mathbb{N} \mid\right.$ we may find a natural number b such that $\left.a^{2}=2 b^{2}\right\}$.

As A is a non-empty subset of \mathbb{N}, it follows that a smallest element a. But we have already proved that given a we may find a smaller element b of A, a contradiction.

Thus $\sqrt{2}$ is irrational.
Theorem 21.2 (Dirichlet's Theorem). Let α be an irrational number.
Then there are infinitely many integers p and q such that

$$
\left|\alpha-\frac{p}{q}\right|<\frac{1}{q^{2}} .
$$

Proof. It suffices to prove that given any positive integer N there are integers p and $1 \leq q \leq N$ such that

$$
|q \alpha-p|<\frac{1}{N}
$$

Indeed, if we divide through by q, and use the fact that $q \leq N$ we get

$$
\begin{aligned}
\left|\alpha-\frac{p}{q}\right| & =\frac{1}{q}|q \alpha-p| \\
& <\frac{1}{q N} \\
& \leq \frac{1}{q^{2}}
\end{aligned}
$$

On the other hand, if we have constructed pairs $\left(p_{i}, q_{i}\right), 1 \leq i \leq k$, and we choose M so that

$$
\left|q_{i} \alpha-p_{i}\right|>\frac{1}{M}
$$

then any pair we construct so that

$$
|q \alpha-p| \leq \frac{1}{M}
$$

is different from the first k pairs. Thus we get infinitely many pairs this way.

Consider the $N+1$ numbers $q \alpha$, where $0 \leq q \leq N$. Let $d_{0}, d_{1}, d_{2}, \ldots, d_{N}$ be the decimal part of each of these numbers. Each one of these numbers lies in one of the N intervals

$$
\left[0, \frac{1}{N}\right), \quad\left[\frac{1}{N}, \frac{2}{N}\right), \quad\left[\frac{2}{N}, \frac{3}{N}\right), \quad \ldots \quad\left[\frac{N-1}{N}, \frac{1}{N}\right) .
$$

Since have $N+1$ pigeons (the decimal parts) and N pigeons (the intervals), two of the decimals must lie in the same interval.

Suppose that the two decimals are d_{r} and d_{s}, where $0 \leq s<r \leq N$. It follows that the decimal part of $(r-s) \alpha$ is less than $1 / N$, that is
$(r-s) \alpha$ is no further than $1 / N$ from an integer. Call the integer p and let $q=(r-s)$. Then $0 \leq q \leq N$ and

$$
|q \alpha-p|<\frac{1}{N}
$$

