3. Divisibility

Definition 3.1. The integers are the set of numbers of the form

$$
\{\ldots,-4,-3,-2,-1,0,1,2,3,4, \ldots\}
$$

So 3356 is an integer but $1 / 2$ is not. Note that we can add, subtract and multiply two integers. For example

$$
2+3=5, \quad 6-8=-2 \quad \text { and } \quad 2 \cdot 3=6
$$

But we cannot always divide. For example we cannot divide 2 into 1 (and get an integer).

Definition 3.2. Let m and n be two integers.
We say m divides n, denoted $m \mid n$, if there is an integer k such that $n=k m$.

For example, 2 divides 6 as $6=3 \cdot 2$ (explicitly, $n=6, m=3$ and $k=2$). 3 also divides 6 as $6=2 \cdot 3$ (explicitly, $n=6, m=2$ and $k=3$). But 5 does not divide 7 . How would we prove this?

Suppose that 5 does divide 7. Then we could find an integer k such that $7=k 5=5 k$. What can we say about $k ? k>0$, that is, k is positive, as 5 and 7 are positive. If $k=1$ then $k 5=5 \neq 7$, too small. If $k \geq 2$ then

$$
\begin{aligned}
5 k & \geq 5 \cdot 2 \\
& =10 \\
& >7,
\end{aligned}
$$

too large. Note that we have exhausted all possible choices for k, since either $k \leq 0$, or $k=1$, or $k>1$. Thus there is no integer k such that $5 k=7$ and so 5 does not divide 7 .

We record some basic properties of divisibility:
Lemma 3.3. Every integer is divisible by 1.
Proof. Let n be an integer. Then $n=n \cdot 1$, so that 1 divides n.
Lemma 3.4. Every integer divides 0.
Proof. Let n be an integer. Then $0=0 \cdot n$, so that n divides 0 .
Here is a slightly more interesting result:
Lemma 3.5. Let a and b be integers.
If a divides b and b is non-zero then $|a| \leq|b|$.
Proof. By assumption we may find an integer k such that $b=k a$.
Claim 3.6. $k \neq 0$.

Proof of (3.6). Suppose not, suppose that $k=0$.
Then

$$
\begin{aligned}
b & =k a \\
& =0 a \\
& =0,
\end{aligned}
$$

which contradicts our assumption that b is non-zero. Thus $k \neq 0$.
We have

$$
\begin{aligned}
|b| & =|k a| \\
& =|k||a| \\
& \geq 1 \cdot|a| \\
& =|a| .
\end{aligned}
$$

Note that the proof of (3.5) hides something important. How do we know in the first place that we need to check $k \neq 0$?

Before we write down a clean proof of (3.5), we try a few things on a piece of scratch paper. The obvious thing to do is start with the equality $b=k a$ and take the absolute value, as in the last step of the proof. We are happy with this, until we realise that we don't know

$$
|k||a| \geq|a|,
$$

unless we know $k \neq 0$. So then we realise we need to check $k \neq 0$.
But when we write down the proof, we hide all the details of how we constructed the proof in the first place.

