5. Odd and Even

Definition 5.1. We say an integer n is even if it is divisible by 2.

Remark 5.2. Note that definitions are always implicitly if and only if statements, even if this is not explicit.

Definition 5.3. We say an integer n is odd if it is not even.

In other words, n is odd if it is not divisible by 2.

Proposition 5.4. Let n be an integer.

Then n is odd if and only if there is an integer k such that n = 2k+1.

Proof. We first do the direction (\Leftarrow).

Suppose not. We will derive a contradiction. Suppose that n = 2k+1 and n is even (that is, not odd). As n is even, there is an integer l such that n = 2l. We have

$$2l = n = 2k + 1.$$

It follows that

$$2(l-k) = 1.$$

Thus 2 divides 1. As 2 > 1 this is a contradiction. It follows that if n = 2k + 1 then n is odd.

Now we prove the other direction (\implies). By assumption n is odd. Let m be the largest even integer less than or equal to n. As m is even, there is an integer k such that m = 2k. Let r = n - m. Then r is a non-negative integer.

Claim 5.5. r > 0.

Proof of (5.5). Suppose not. If r = 0 then n = m and so n is even, a contradiction.

Claim 5.6. $r \leq 1$.

Proof of (5.6). Suppose not. Then r > 1. As r is an integer it follows that $r \ge 2$. In this case

$$m+2 \le m+r \le n.$$

On the other hand,

$$m + 2 = 2k + 2$$
$$= 2(k + 1)$$

Thus m + 2 is an even integer less than or equal to n. This contradicts our choice of m. Thus $r \leq 1$.

As r is integer and $0 < r \leq 1$ we must have r = 1. But then n = m + 1 = 2k + 1.

Corollary 5.7. An integer n is odd if and only if n + 1 is even.

Proof. We first prove (\Longrightarrow) .

If n is odd then (5.4) implies that there is an integer k such that n = 2k + 1. In this case

$$n + 1 = 2k + 1 + 1$$

= 2k + 2
= 2(k + 1).

Thus n+1 is even.

Now we prove (\Leftarrow).

If n + 1 is even then there is an integer k such that n + 1 = 2k. In this case

$$n = 2k - 1$$

= 2(k - 1) + 2 - 1
= 2(k - 1) + 1.

As k - 1 is an integer, (5.4) implies that n is odd.