5. Odd and Even

Definition 5.1. We say an integer n is even if it is divisible by 2 .
Remark 5.2. Note that definitions are always implicitly if and only if statements, even if this is not explicit.

Definition 5.3. We say an integer n is odd if it is not even.
In other words, n is odd if it is not divisible by 2 .
Proposition 5.4. Let n be an integer.
Then n is odd if and only if there is an integer k such that $n=2 k+1$.
Proof. We first do the direction (\Longleftarrow).
Suppose not. We will derive a contradiction. Suppose that $n=2 k+1$ and n is even (that is, not odd). As n is even, there is an integer l such that $n=2 l$. We have

$$
2 l=n=2 k+1 .
$$

It follows that

$$
2(l-k)=1
$$

Thus 2 divides 1 . As $2>1$ this is a contradiction. It follows that if $n=2 k+1$ then n is odd.

Now we prove the other direction (\Longrightarrow). By assumption n is odd. Let m be the largest even integer less than or equal to n. As m is even, there is an integer k such that $m=2 k$. Let $r=n-m$. Then r is a non-negative integer.

Claim 5.5. $r>0$.
Proof of (5.5). Suppose not. If $r=0$ then $n=m$ and so n is even, a contradiction.

Claim 5.6. $r \leq 1$.
Proof of (5.6). Suppose not. Then $r>1$. As r is an integer it follows that $r \geq 2$. In this case

$$
\begin{aligned}
m+2 & \leq m+r \\
& \leq n .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
m+2 & =2 k+2 \\
& =2(k+1) .
\end{aligned}
$$

Thus $m+2$ is an even integer less than or equal to n. This contradicts our choice of m. Thus $r \leq 1$.

As r is integer and $0<r \leq 1$ we must have $r=1$. But then $n=m+1=2 k+1$.

Corollary 5.7. An integer n is odd if and only if $n+1$ is even.
Proof. We first prove (\Longrightarrow).
If n is odd then (5.4) implies that there is an integer k such that $n=2 k+1$. In this case

$$
\begin{aligned}
n+1 & =2 k+1+1 \\
& =2 k+2 \\
& =2(k+1) .
\end{aligned}
$$

Thus $n+1$ is even.
Now we prove ($\Longleftarrow)$.
If $n+1$ is even then there is an integer k such that $n+1=2 k$. In this case

$$
\begin{aligned}
n & =2 k-1 \\
& =2(k-1)+2-1 \\
& =2(k-1)+1 .
\end{aligned}
$$

As $k-1$ is an integer, (5.4) implies that n is odd.

