6. Odds and Ends

Here we collect a couple of ad hoc techniques.
Even though proof by contradiction is a useful technique, it is often possible to avoid proof by contradiction using a different technique to prove the same result.

One way to prove

$$
p \Longrightarrow q
$$

is to prove the contrapositive

$$
\neg q \Longrightarrow \neg p
$$

In fact both statements are equivalent. The first statement is only false if p is true and q is false. The second statement is only false if $\neg q$ is true and $\neg p$ is false, which is to say, q is true and p is false, the same as before.

Lemma 6.1. Let n be an integer.
If $n^{2}-6 n+5$ is even then n is odd.
Proof. It suffices to prove the contrapositive, that if n is even then $n^{2}-6 n+5$ is odd.

Suppose n is even. Then there is an integer m such that $n=2 m$. In this case

$$
\begin{aligned}
n^{2}-6 n+5 & =(2 m)^{2}-6(2 m)+5 \\
& =4 m^{2}-12 m+4+1 \\
& =2\left(2 m^{2}-6 m+2\right)+1 .
\end{aligned}
$$

As $2 m^{2}-6 m+2$ is an integer it follows that $n^{2}-6 n+5$ is odd.
The next observation is that if you want to know if something is true or false, it is often sufficient to give a single example, often called a counterexample, especially if you are trying to show the statement is false.

Question 6.2. True or false?
If n is an integer then

$$
n(n+1)
$$

is always divisible by 3 .
False.
Take $n=1$. Then

$$
n(n+1)=1 \cdot 2=2
$$

which is not divisible by 3 , as $2<3$. Thus $n=1$ is a counterexample to the statement that

$$
n(n+1)
$$

is always divisible by 3 .
Finally, sometimes to prove a statement, it helps to go backwards from the goal, instead of forwards from the hypotheses. This is often the case for inequalities.

Theorem 6.3. If a and b are any real numbers then

$$
a^{2}+b^{2} \geq 2 a b
$$

Proof. As $a-b$ is a real number and the square of any real number is non-negative we have,

$$
(a-b)^{2} \geq 0
$$

Expanding we get

$$
a^{2}-2 a b+b^{2} \geq 0
$$

so that

$$
a^{2}+b^{2} \geq 2 a b
$$

