7. Induction

Let n be a non-negative integer. Compute the following sums:

$$
\begin{gather*}
1+2+3+\cdots+(n-1)+n \tag{1}\\
1+3+5+\cdots+(2 n-3)+(2 n-1) \tag{2}\\
2+4+6+\cdots+(2 n-2)+2 n \tag{3}
\end{gather*}
$$

The first sum was famously computed by Gauss. Reverse the sequence, to get

$$
n+(n-1)+(n-2)+\cdots+1
$$

Now add the two sequences together to get

$$
(n+1)+(n+1)+(n+1)+\cdots+(n+1)
$$

Since there are n terms the sum is

$$
n(n+1)
$$

But this is twice what we want it to be, so

$$
1+2+3+\cdots+n=\frac{n(n+1)}{2}
$$

One might also guess that the second sum is n^{2}, just by looking at a few examples.

Induction gives a method to prove this formula, assuming you already have the formula.

Axiom 7.1 (Induction Principle). Let $P(n)$ be a statement about the positive integers.

Then $P(n)$ is true for all positive integers, provided:
(1) $P(1)$ is true.
(2) $P(k)$ implies $P(k+1)$, for every positive integer k.

Theorem 7.2. If n is a non-negative integer then

$$
1+2+3+\cdots+(n-1)+n=\frac{n(n+1)}{2}
$$

Proof. Let $P(n)$ be the statement that

$$
1+2+3+\cdots+(n-1)+n=\frac{n(n+1)}{2}
$$

We want to know that $P(n)$ is true for all positive integers n. We proceed by mathematical induction. We have to check two things.

First we check that $P(1)$ is true. If $n=1$ the LHS is equal to
and the RHS is equal to

$$
\frac{n(n+1)}{2}=\frac{1(1+1)}{2}=1
$$

Thus $P(1)$ is true.
Now we check that $P(k)$ implies $P(k+1)$, for every positive integer k. Let k be a positive integer. Assume that $P(k)$ holds, that is, assume that

$$
1+2+3+\cdots+(k-1)+k=\frac{k(k+1)}{2}
$$

We want to check that $P(k+1)$ holds. We have

$$
\begin{aligned}
1+2+3+\cdots+k+(k+1) & =[1+2+3+\cdots+k]+(k+1) \\
& =\frac{k(k+1)}{2}+(k+1) \\
& =\frac{k(k+1)+2(k+1)}{2} \\
& =\frac{(k+1)(k+2)}{2}
\end{aligned}
$$

where we used the inductive hypothesis $P(k)$ to get from line one to line two. Therefore we have

$$
1+2+3+\cdots+k+(k+1)=\frac{(k+1)(k+2)}{2}
$$

so that $P(k+1)$ holds.
We checked that $P(1)$ holds and that $P(k) \Longrightarrow P(k+1)$ holds and so by the principle of mathematical induction $P(n)$ holds for all n, that is for every positive integer n,

$$
1+2+3+\cdots+(n-1)+n=\frac{n(n+1)}{2}
$$

Lemma 7.3. If n is a non-negative integer then

$$
1+3+5+\cdots+(2 n-3)+(2 n-1)=n^{2} .
$$

Proof. Let $P(n)$ be the statement that

$$
1+3+5+\cdots+(2 n-3)+(2 n-1)=n^{2}
$$

We want to know that $P(n)$ is true for all positive integers n. We proceed by mathematical induction. We have to check two things.

First we check that $P(1)$ is true. If $n=1$ the LHS is equal to
and the RHS is equal to

$$
n^{2}=1^{2}=1
$$

Thus $P(1)$ is true.
Now we check that $P(k)$ implies $P(k+1)$, for every positive integer k. Let k be a positive integer. Assume that $P(k)$ holds, that is, assume that

$$
1+3+5+\cdots+(2 k-1)=k^{2}
$$

We want to check that $P(k+1)$ holds. We have

$$
\begin{aligned}
1+3+5+\cdots+(2 k+1) & =[1+3+5+\cdots+(2 k-1)]+(2 k+1) \\
& =k^{2}+2 k+1 \\
& =(k+1)^{2}
\end{aligned}
$$

where we used the induction hypothesis $P(k)$ to get from line one to line two. Therefore we have

$$
1+3+5+\cdots+(2 k+1)=(k+1)^{2}
$$

so that $P(k+1)$ holds.
We checked that $P(1)$ holds and that $P(k) \Longrightarrow P(k+1)$ holds and so by the principle of mathematical induction $P(n)$ holds for all n, that is, for every positive integer n,

$$
1+3+5+\cdots+(2 n-3)+(2 n-1)=n^{2}
$$

Lemma 7.4. For every positive integer n,

$$
5^{2 n-1}+2^{2 n-1}
$$

is divisible by 7 .
Proof. Let $P(n)$ be the statement that

$$
5^{2 n-1}+2^{2 n-1}
$$

is divisible by 7 .
We want to know that $P(n)$ is true for all positive integers n. We proceed by mathematical induction. We have to check two things.

First we check that $P(1)$ is true. If $n=1$ then

$$
\begin{aligned}
5^{2 n-1}+2^{2 n-1} & =5^{2-1}+2^{2-1} \\
& =5+2 \\
& =7,
\end{aligned}
$$

which is divisible by 7 .

Now we check that $P(k)$ implies $P(k+1)$, for every positive integer k. Let k be a positive integer. Assume that $P(k)$ holds, that is, assume that

$$
5^{2 k-1}+2^{2 k-1}
$$

is divisible by 7 .
We want to check that $P(k+1)$ holds. We have

$$
\begin{aligned}
5^{2 k+1}+2^{2 k+1} & =5^{2} 5^{2 k-1}+2^{2} 2^{2 k-1} \\
& =5^{2} 5^{2 k-1}+5^{2} 2^{2 k-1}-5^{2} 2^{2 k-1}+2^{2} 2^{2 k-1} \\
& =5^{2}\left(5^{2 k-1}+2^{2 k-1}\right)+\left(2^{2}-5^{2}\right) 2^{2 k-1} \\
& =5^{2}\left(5^{2 k-1}+2^{2 k-1}\right)-21 \cdot 2^{2 k-1}
\end{aligned}
$$

By induction, we know that

$$
5^{2 k-1}+2^{2 k-1}
$$

is divisible by 7. Thus

$$
5^{2}\left(5^{2 k-1}+2^{2 k-1}\right)
$$

is divisible by 7 . On the other hand,

$$
21 \cdot 2^{2 k-1}
$$

is also divisible by 7. Thus

$$
5^{2 k+1}+2^{2 k+1}
$$

is divisible by 7 . It follows that $P(k+1)$ holds.
We checked that $P(1)$ holds and that $P(k) \Longrightarrow P(k+1)$ holds and so by the principle of mathematical induction $P(n)$ holds for all n, that is for every positive integer n,

$$
5^{2 n-1}+2^{2 n-1}
$$

is divisible by 7 .
Lemma 7.5. For every positive integer n,

$$
n<2^{n} .
$$

Proof. Let $P(n)$ be the statement that

$$
n<2^{n} .
$$

We want to show that $P(n)$ holds for all positive integers n. We proceed by mathematical induction. We have to check two things.

First we check that $P(1)$ is true. If $n=1$ then the LHS is 1 and the RHS is 2 and $P(1)$ is true as $1<2$.

Now we check that $P(k)$ implies $P(k+1)$, for every positive integer k. Let k be a positive integer. Assume that $P(k)$ holds, that is, assume that

$$
k<2^{k} .
$$

We want to check that $P(k+1)$ holds. We have

$$
\begin{aligned}
k+1 & \leq k+k \\
& <2^{k}+2^{k} \\
& =2 \cdot 2^{k} \\
& =2^{k+1},
\end{aligned}
$$

where we used the inductive hypothesis $P(k)$ to get from line one to line two. It follows that $P(k+1)$ holds.

We checked that $P(1)$ holds and that $P(k) \Longrightarrow P(k+1)$ holds and so by the principle of mathematical induction $P(n)$ holds for all n, that is for every positive integer n,

$$
n<2^{n} .
$$

