8. Variations on a Theme

Here we present some variations on the method of induction.
First we note that it is not really necessary to start at $n=1$. Sometimes it makes sense to start at zero and sometimes it makes sense to start at a larger value of n.

Lemma 8.1. For every integer $n \geq 4$,

$$
2^{n}<n!
$$

Proof. Let $P(n)$ be the statement that

$$
2^{n}<n!
$$

We prove that $P(n)$ holds for all integers $n \geq 4$. We proceed by mathematical induction.

We first check that $P(4)$ holds. If $n=4$ then the LHS is

$$
2^{n}=2^{4}=2 \cdot 2^{3}
$$

and the RHS is

$$
n!=4!=4 \cdot 3 \cdot 2 \cdot 1=2^{3} \cdot 3
$$

As $2<3$ it follows that

$$
\begin{aligned}
2^{4} & =2 \cdot 2^{3} \\
& <3 \cdot 2^{3} \\
& =4!.
\end{aligned}
$$

Thus $P(4)$ is true.
We now check that $P(k) \Longrightarrow P(k+1)$, for every $k \geq 4$. Assume that $P(k)$ holds. We check that $P(k+1)$ holds. We have

$$
\begin{aligned}
2^{k+1} & =2 \cdot 2^{k} \\
& <2 \cdot k! \\
& \leq(k+1) \cdot k! \\
& =(k+1)!
\end{aligned}
$$

where we used the inductive hypothesis to get from line one to line two and the fact that $k \geq 1$ to get from line two to line three. Thus $P(k+1)$ holds.

We checked that $P(4)$ holds and that $P(k) \Longrightarrow P(k+1)$ holds and so by the principle of mathematical induction $P(n)$ holds for all $n \geq 4$, that is, for every positive integer n,

$$
2^{n} \leq_{1} n!
$$

Another place that mathematical induction turns up is in definitions, although in this context it is often called recursion. Here are three wellknown examples.
Definition 8.2. Let n be a non-negative integer.
The factorial of n, denoted n !, is defined recursively by

$$
n!= \begin{cases}1 & \text { if } n=0 \\ n \cdot(n-1)! & \text { if } n>0\end{cases}
$$

Definition 8.3. Let a_{1}, a_{2}, \ldots be a sequence of real numbers. The sum of the first n terms, denoted

$$
\sum_{i=1}^{n} a_{i}
$$

is defined recursively by

$$
\sum_{i=1}^{n} a_{i}= \begin{cases}a_{1} & \text { if } n=1 \\ \sum_{i=1}^{n-1} a_{i}+a_{n} & \text { if } n>1\end{cases}
$$

Definition 8.4. Let a be a real number and let n be a non-negative integer. The product of a with itself n times, denoted

$$
a^{n}
$$

is defined recursively by

$$
a^{n}= \begin{cases}1 & \text { if } n=0 \\ a \cdot a^{n-1} & \text { if } n>0\end{cases}
$$

It is possible to define sequences of integers with quite subtle properties using quite simple definitions:

Definition 8.5. The Fibonacci sequence is the sequence of nonnegative integers $F_{0}, F_{1}, F_{2}, \ldots$ defined recursively by

$$
F_{n}= \begin{cases}0 & \text { if } n=0 \\ 1 & \text { if } n=1 \\ F_{n-2}+F_{n-1} & \text { if } n>1\end{cases}
$$

The first few terms are therefore

$$
0,1,1,2,3,5,8,13, \ldots
$$

Somewhat surprisingly there is a closed form expression for the nth term of the Fibonacci sequence:

Theorem 8.6 (Binet Formula). If n is a non-negative integer then

$$
F_{n}=\frac{\alpha^{n}-\beta^{n}}{\sqrt{5}}
$$

where

$$
\alpha=\frac{1+\sqrt{5}}{2} \quad \text { and } \quad \beta=\frac{1-\sqrt{5}}{2} .
$$

The numbers α and β are the two roots of the quadratic equation

$$
x^{2}-x-1=0 .
$$

α is called the Golden ratio. If you have a rectangle with sides in proportion to the Golden ratio and you remove a square from one end of length the shortest side then you get another rectangle whose sides have ratio the Golden ratio.

Note that $-1<\beta<0$, so that $0<|\beta|<1$. Therefore $|\beta|^{n}$ approaches zero, as n goes to infinity. In particular, F_{n} is the closest integer to $\alpha^{n} / \sqrt{5}$ and the ratio F_{n} / F_{n-1} approaches the Golden ratio.

To prove (8.6) we will need strong mathematical induction:
Axiom 8.7 (Induction Principle (bis)). Let $P(n)$ be a statement about the positive integers.

Then $P(n)$ is true for all positive integers, provided:
(1) $P(1)$ is true.
(2) $(P(j)$ for every $1 \leq j \leq k)$ implies $P(k+1)$.

In other words, to deduce $P(k+1)$, you are free not only to assume $P(k)$, but you may also assume

$$
P(1), \quad P(2), \quad P(3), \quad \ldots \quad P(k-1) \quad \text { and } \quad P(k) .
$$

Proof of (8.6). Let $P(n)$ be the statement that

$$
F_{n}=\frac{\alpha^{n}-\beta^{n}}{\sqrt{5}} .
$$

We prove this using strong mathematical induction.
We need to check two things.
If $n=0$ then the LHS is

$$
F_{n}=F_{0}=0,
$$

and the RHS is

$$
\frac{\alpha^{n}-\beta^{n}}{\sqrt{5}}=\frac{1-1}{\sqrt{5}}=0 .
$$

Thus $P(0)$ is true.
If $n=1$ then the LHS is

$$
F_{n}=\underset{3}{F_{1}}=1,
$$

and the RHS is

$$
\begin{aligned}
\frac{\alpha^{n}-\beta^{n}}{\sqrt{5}} & =\frac{\alpha-\beta}{\sqrt{5}} \\
& =\frac{\frac{1+\sqrt{5}}{2}-\frac{1-\sqrt{5}}{2}}{\sqrt{5}} \\
& =\frac{2 \sqrt{5}}{2 \sqrt{5}} \\
& =1 .
\end{aligned}
$$

Thus $P(1)$ is true.
Now we assume $P(j)$ holds for every $0 \leq j \leq k$. We also assume that $k \geq 1$. We have

$$
\begin{aligned}
F_{k+1} & =F_{k-1}+F_{k} \\
& =\frac{\alpha^{k-1}-\beta^{k-1}}{\sqrt{5}}+\frac{\alpha^{k}-\beta^{k}}{\sqrt{5}} \\
& =\frac{\alpha^{k}+\alpha^{k-1}-\left(\beta^{k}+\beta^{k-1}\right)}{\sqrt{5}} \\
& =\frac{\alpha^{k-1}(1+\alpha)-\beta^{k-1}(1+\beta)}{\sqrt{5}} \\
& =\frac{\alpha^{k+1}-\beta^{k+1}}{\sqrt{5}}
\end{aligned}
$$

where we used the recursive definition of F_{k} on the top line, the fact that $P(k-1)$ and $P(k)$ hold by strong induction, to get from the first line to the second line, and we used the identities

$$
1+\alpha=\alpha^{2} \quad \text { and } \quad 1+\beta=\beta^{2}
$$

which hold as α and β are roots of the quadratic equation

$$
x^{2}-x-1=0 .
$$

Thus $P(k+1)$ holds.
As we checked the hypothesis of strong mathematical induction, it follows that $P(n)$ holds for all non-negative integers n, that is,

$$
F_{n}=\frac{\alpha^{n}-\beta^{n}}{\sqrt{5}} .
$$

