9. More about induction

Here we collect some more sophisticated topics centred around induction. First of all, how to find a formula for the sum of the first n squares?

$$
1^{2}+2^{2}+3^{2}+\cdots+n^{2}=?
$$

By analogy with the other cases, we first guess that the sum is a polynomial in n. Now we have n terms and each term is at most n^{2}. Therefore the sum is at most n^{3}. So it looks as though we have a polynomial of degree at most 3 (on the other hand, half of the terms are at least $(n / 2)^{2}=n^{2} / 4$ and so the sum is at least

$$
n^{2} / 4 \cdot n / 2=n^{3} / 8
$$

so almost certainly the formula involves a cubic polynomial).
If we imagine plugging in $n=0$ then there are no terms in the sum and so the LHS is zero. But then our polynomial of degree 3 is divisible by n. The general such polynomial is

$$
n\left(a n^{2}+b n+c\right)
$$

and it is our job to determine a, b and c. We plug in small values of n to determine a, b and c. If $n=1$ the LHS is 1 . Thus

$$
a+b+c=1 .
$$

If $n=2$ the LHS is 5 and so

$$
2(4 a+2 b+c)=5 .
$$

If we multiply the first equation by 2 and subtract we get:

$$
2(3 a+b)=3
$$

If $n=3$ the LHS is 14 and so

$$
3(9 a+3 b+c)=14 .
$$

Multiplying the first equation by 3 and subtracting we get

$$
3(8 a+2 b)=11
$$

If we take the other equation involving only a and b, multiply by 3 and subtract, we get

$$
3(2 a)=2 .
$$

Therefore $a=1 / 3$. It follows that $b=1 / 2$ and so $c=1 / 6$. We guess a formula of the form

$$
1^{2}+2^{2}+3^{2}+\cdots+n^{2}=\frac{n\left(2 n^{2}+3 n+1\right)}{6}=\frac{n(n+1)(2 n+1)}{6} .
$$

It is a homework problem to prove this is correct.

Sometimes one can do a double induction:
Theorem 9.1. For all non-negative integers m and n we have

$$
F_{m+n+1}=F_{m} F_{n}+F_{m+1} F_{n+1} .
$$

Proof. Let $P(m, n)$ be the statement that

$$
F_{m+n+1}=F_{m} F_{n}+F_{m+1} F_{n+1} .
$$

We prove this by double (strong) induction on m and n.
We have to check three things. We have to check that $P(0,0)$, $P(1,0), P(0,1)$ and $P(1,1)$ all hold and and that $P(i, j)$ for all $i \leq p$ and $j \leq q$ implies both $P(p+1, q)$ and $P(p, q+1)$.

We first check that $P(0,0), P(1,0), P(0,1)$ and $P(1,1)$ all hold.
When $m=n=0$ the LHS of the equation is

$$
F_{m+n+1}=F_{0+0+1}=F_{1}=1
$$

and the RHS of the equation is

$$
F_{m} F_{n}+F_{m+1} F_{n+1}=F_{0} F_{0}+F_{1} F_{1}=0+1=1
$$

As both sides are equal, $P(0,0)$ holds.
When $m=1$ and $n=0$, the LHS of the equation is

$$
F_{m+n+1}=F_{1+0+1}=F_{2}=1
$$

and the RHS of the equation is

$$
F_{m} F_{n}+F_{m+1} F_{n+1}=F_{1} F_{0}+F_{2} F_{1}=0+1=1
$$

As both sides are equal, $P(1,0)$ holds. By symmetry, $P(0,1)$ also holds.
When $m=1$ and $n=1$, the LHS of the equation is

$$
F_{m+n+1}=F_{1+1+1}=F_{3}=2,
$$

and the RHS of the equation is

$$
F_{m} F_{n}+F_{m+1} F_{n+1}=F_{1} F_{1}+F_{2} F_{2}=1+1=2
$$

As both sides are equal, $P(1,1)$ holds.
Thus $P(0,0), P(1,0), P(0,1)$ and $P(1,1)$ all hold.
Now assume that $P(i, j)$ holds for all $i \leq p$ and $j \leq q$. Suppose that $p \geq 1$. Let us show that $P(p+1, q)$ holds. We have

$$
\begin{aligned}
& F_{p+q+2}=F_{p+q}+F_{p+q+1} \\
&=F_{p-1} F_{q}+F_{p} F_{q+1}+F_{p} F_{q}+F_{p+1} F_{q+1} \\
&=F_{p-1} F_{q}+F_{p} F_{q}+F_{p} F_{q+1}+F_{p+1} F_{q+1} \\
&=\left(F_{p-1}+F_{p}\right) F_{q}+\left(F_{p}+F_{p+1}\right) F_{q+1} \\
&=F_{p+1} F_{q}+F_{p+2} F_{q+1}, \\
& \quad 2
\end{aligned}
$$

where we used the recursive definition of the Fibonacci numbers for the first line, the inductive hypotheses $P(p-1, q)$ and $P(p, q)$ to get from the first line to the second line, and the recursive definition of the Fibonacci numbers to get from the fourth line to the fifth line.

Therefore $P(p+1, q)$ holds. We have shown that $P(i, j)$ for all $i \leq p$ and $j \leq q$ implies $P(p+1, q)$. By symmetry, it follows that we can also deduce $P(p, q+1)$ using the same hypotheses.

It follows by induction that $P(m, n)$ holds for all non-negative integers m and n, that is,

$$
F_{m+n+1}=F_{m} F_{n}+F_{m+1} F_{n+1} .
$$

