
MODEL ANSWERS TO THE THIRD HOMEWORK

1. We prove this result by mathematical induction. Let P (n) be the
statement that

12 + 22 + 32 + · · ·+ (n− 1)2 + n2 =
n(n + 1)(2n + 1)

6

We have to prove that P (1) holds and that P (k) =⇒ P (k + 1) for
any positive integer k.
If n = 1 then the LHS is

12 = 1,

and the RHS is

n(n + 1)(2n + 1)

6
=

1(1 + 1)2 + 1

6
= 1.

As both sides are equal, it follows that P (1) is true.
Now suppose that k is a positive integer and P (k) holds. We check
that P (k + 1) holds.
We have

12 + 22 + 32 + · · ·+ k2 + (k + 1)2 = [12 + 22 + 32 + · · ·+ k2] + (k + 1)2

=
k(k + 1)(2k + 1)

6
+ (k + 1)2

=
k(k + 1)(2k + 1) + 6(k + 1)2

6

=
(k + 1)(k(2k + 1) + 6(k + 1))

6

=
(k + 1)(2k2 + 7k + 6)

6

=
(k + 1)(k + 2)(2k + 3)

6
,

where we use the fact that P (k) is true to get from the first line to the
second line. It follows that P (k + 1) holds.
As we have shown that P (1) is true and that P (k) =⇒ P (k + 1) for
any positive integer k, by the principle of mathematical induction it
follows that P (n) holds for all n, that is

12 + 22 + 32 + · · ·+ (n− 1)2 + n2 =
n(n + 1)(2n + 1)

6
.
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2. (5.1) We prove this result by mathematical induction. Let P (n) be
the statement that

n3 − n

is divisible by 3.
We have to prove that P (1) holds and that P (k) =⇒ P (k + 1) for
any positive integer k.
If n = 1 then

n3 − n = 13 − 1 = 0,

is divisible by 3. Thus P (1) holds.
Now suppose that k is a positive integer and P (k) holds. We check
that P (k + 1) holds.
We have

(k + 1)3 − (k + 1) = k3 + 3k2 + 3k + 1− k − 1

= (k3 − k) + 3(k2 + k)

Now k3−k is divisible by 3 by induction and 3(k2 +k) is divisible by 3
by inspection, as k2 +k is an integer. Thus (k+1)3−(k+1) is divisible
by 3 and so P (k + 1) is true.
As we have shown that P (1) is true and that P (k) =⇒ P (k + 1) for
any positive integer k, by the principle of mathematical induction it
follows that P (n) holds for all n, that is

n3 − n,

is divisible by 3.
(5.2) We prove this result by mathematical induction. Let P (n) be the
statement that

n3 ≤ 2n.

We have to prove that P (10) holds and that P (k) =⇒ P (k + 1) for
any integer k ≥ 10.
If n = 10 then the LHS is

n3 = 103 = 23 · 53

and the RHS is

2n = 210 = 23 · 27.

Now 53 = 125 and 27 = 128 thus

103 = 23 · 53

≤ 23 · 27

= 210.

Thus P (10) holds.
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Now suppose that k is a positive integer and P (k) holds. We check
that P (k + 1) holds.
We have

(k + 1)3 = k3 + 3k2 + 3k + 1

≤ k3 + 3k2 + 3k2 + 3k2

= k3 + 9k2

≤ k3 + k3

= 2k3

< 2 · 2k

≤ 2k+1,

where we used the fact that 3k ≤ 3k2 and the fact that 1 ≤ 3k2, for
k ≥ 1, to get from the first line to the second line; we used the fact that
9k2 ≤ k3, for k ≥ 10, to get from the third line to the fourth line and
the inductive hypothesis to get from the fifth to the sixth line. Thus
P (k + 1) holds.
As we have shown that P (10) is true and that P (k) =⇒ P (k + 1)
for any integer k ≥ 10, by the principle of mathematical induction it
follows that P (n) holds for all n ≥ 10, that is

n3 ≤ 2n.

(5.3) We prove this result by mathematical induction. Let P (n) be the
statement that n ≥ 1.
We have to prove that P (1) holds and that P (k) =⇒ P (k + 1) for
any positive integer k.
If n = 1 then the LHS is 1 and as 1 ≥ 1 is a true statement, P (1) is
true.
Now suppose that P (k) is true. We have

k + 1 ≥ k

≥ 1,

where we used P (k) to get from the first line to the second line. Thus
P (k + 1) holds.
As we have shown that P (1) is true and that P (k) =⇒ P (k + 1) for
any positive integer k, by the principle of mathematical induction it
follows that P (n) holds for all n, that is

n ≥ 1.
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(5.4) We prove this result by mathematical induction. Let P (n) be the
statement that

1 + x + x2 + · · ·+ xn =
1− xn+1

1− x
.

We have to prove that P (0) holds and that P (k) =⇒ P (k + 1) for
any non-negative integer k.
If n = 0 the LHS is 1 and the RHS is also

1− xn+1

1− x
=

1− x

1− x
= 1.

Thus P (0) holds.
Now suppose that P (k) holds. We check that P (k + 1) holds.

1 + x + x2 + · · ·+ xk + xk+1 = [1 + x + x2 + · · ·+ xk] + xk+1

=
1− xk+1

1− x
+ xk+1

=
1− xk+1 + (1− x)xk+1

1− x

=
1− xk+1 + xk+1 − xk+2

1− x

=
1− xk+2

1− x
,

where we used P (k) to get from the first line to the second line. Thus
P (k + 1) holds.
As we have shown that P (0) is true and that P (k) =⇒ P (k + 1) for
any non-negative integer k, by the principle of mathematical induction
it follows that P (n) holds for all n, that is

1 + x + x2 + · · ·+ xn =
1− xn+1

1− x
.

3. (i)
1, 2, 3/2, 5/3, 8/5, . . . .

(ii) We prove this result by mathematical induction. Let P (n) be the
statement that

bn =
Fn+1

Fn

.

We have to prove that P (1) holds and that P (k) =⇒ P (k + 1) for
any positive integer k.
We check that P (1) holds. If n = 1 then b1 = 1 and the RHS is equal
to

Fn+1

Fn

=
1

1
= 1.
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Thus P (1) holds.
Now suppose that P (k) holds. We check that P (k + 1) holds.

bk+1 = 1 +
1

bk

= 1 +
1
Fk

Fk−1

= 1 +
Fk−1

Fk

=
Fk−1 + Fk

Fk

=
Fk+1

Fk

,

where we used the inductive hypothesis to get from the first line to the
second line. Thus P (k + 1) holds.
As we have shown that P (1) is true and that P (k) =⇒ P (k + 1) for
any positive integer, P (n) is true for all positive integers, that is

bn =
Fn+1

Fn

.

(iii) We prove this result by mathematical induction. Let P (n) be the
statement that

bn+1 − bn =
(−1)n+1

FnFn+1

.

We have to prove that P (1) holds and that P (k) =⇒ P (k + 1) for
any positive integer k.
We check that P (1) holds. If n = 1 then the LHS is

bn+1 − bn = b2 − b1

= 2− 1

= 1,

and the RHS is equal to

(−1)n+1

FnFn+1

=
(−1)2

F1F2

=
1

1
= 1.

Thus P (1) holds.
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Now suppose that P (k) holds. We check that P (k+ 1) holds. We have

bk+2 − bk+1 = (1 +
1

bk+1

)− (1 +
1

bk
)

=
1

bk+1

− 1

bk

=
bk − bk+1

bkbk+1

= −bk+1 − bk
Fk+1

Fk

Fk+2

Fk+1

= −
(−1)k+1

FkFk+1

Fk+2

Fk

= −(−1)k+1

FkFk+1

Fk

Fk+2

=
(−1)k+2

Fk+1Fk+2

,

where we used the recursive definition of the sequence for the first line,
(i), twice, to get from the third line to the fourth line and the inductive
hypothesis to get from the fourth line to the fifth line. Thus P (k + 1)
holds.
As we have shown that P (1) is true and that P (k) =⇒ P (k + 1) for
any positive integer, P (n) is true for all positive integers, that is

bn+1 − bn =
(−1)n+1

FnFn+1

.

4. The trick is to write down the first five cases by hand and then use
the fact that we can get any other postage by adding an appropriate
number of five cent stamps.
Formally we want to show that we can solve the Diophantine equation

5x + 9y = n,

as soon as n ≥ 34, using non-negative integers x and y.
Let P (n) be the statement that we can find non-negative integer solu-
tions of the equation

5x + 9y = n.

We will prove that P (n) holds for all integers n ≥ 34 using strong
mathematical induction.
We first check that P (34), P (35), P (36), P (37) and P (38) hold:
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In fact (x, y) = (5, 1), (7, 0), (0, 4), (2, 3) and (4, 2) are non-negative
solutions to the equations:

5x+9y = 34 5x+9y = 35 5x+9y = 36 5x+9y = 37 and 5x+9y = 38,

Thus P (34), P (35), P (36), P (37) and P (38) are true.
We now check that if k ≥ 38 and P (j) holds for all 34 ≤ j ≤ k then
P (k + 1) holds.
Let j = k + 1− 5 ≤ k. Note that

j = k + 1− 5

= k − 4

≥ 38− 4

≥ 34.

By our inductive hypothesis, P (j) holds, so that we may find non-
negative integers x and y such that

5x + 9y = j.

Then (x + 1, y) are non-negative integers and

5(x + 1) + 9y = 5x + 5 + 9y

= 5x + 9y + 5

= j + 5

= k + 1.

Thus P (k + 1) holds.
As we have shown that P (34), P (35), P (36), P (37) and P (38) are true
and that if k ≥ 38 then P (j) for all 34 ≤ j ≤ k implies P (k + 1), we
know that P (n) holds for all n ≥ 34 by strong mathematical induction,
that is, we can solve the Diophantine equation

5x + 9y = n,

as soon as n ≥ 34, using non-negative integers x and y.
Challenge problems/Just for fun:
5. This is much easier than it looks. Let P (n) be the statement that
we can find a successful trip, with 2n dots.
We prove this by mathematical induction. P (0) is obviously true, since
there are no dots at all.
Suppose that P (k) is true. Suppose we are presented with a colouring
with 2(k + 1) colours. Look for a pair consisting of a red dot followed
by a blue dot, in that order, going clockwise around the circle. A
moment’s thought will convince you that such a pair always exists;
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just start anywhere and wait until you cross a red dot. Now wait until
you cross a blue dot.
Consider the 2k remaining dots. By induction we know there is some-
where to start so that we always cross at least as many red dots as blue
dots. We can always move this starting point, so that it is not in the
middle of the two consecutive red and blue dots we are ignoring.
Now consider what happens as we go around the circle. Until we cross
the two special dots, we meet at least as many red dots as blue dots.
When we meet one of the two special dots, we will first meet the red
dot, by our choice of special dots and our choice of starting point. After
we cross the red dot then we cross the blue dot. After this, we continue
to meet at least as many red dots as blue dots.
6. The case p = 0 is easy, since n0 = 1, and so the sum is n. The case
p = 1 is done in lectures. The case p = 2 is the first problem. We will
do the case when p = 3 (I am not very patient).
We guess the sum is given by a polynomial of degree 4. If n = 0 then
the sum is zero, and so this quartic is divisible by n. Therefore

13 + 23 + 33 + · · ·+ n3 = n(an3 + bn2 + cn + d).

Let’s compute a couple of these sums. If n = 1, 2, 3, 4, 5, 6, we get

1 9 36 100 225 and 441.

Note that the first four numbers are squares. In fact 225 = 152 and
441 = 212.
So we might guess that the RHS is a square.

13 + 23 + 33 + · · ·+ n3 = n2(an + b)2.

There is not much for it but to pick two values of n and use this to
compute a and b. When n = 1 and 2,

1 = (a + b)2 and 9 = 4(2a + b)2.

If we guess a and b are non-negative we get

1 = a + b and 3 = 2(2a + b).

It follows that a = 1/2 and b = 1/2. Thus we guess

13 + 23 + 33 + · · ·+ n3 =

(
n(n + 1)

2

)2

.

Let P (n) be the statement that this is correct. We prove P (n) holds
for all non-negative integers by induction.
If n = 1 the LHS is

13 = 1
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and the RHS is (
n(n + 1)

2

)2

=

(
1(1 + 1)

2

)2

= 1.

Thus P (1) holds.
We now check that P (k + 1) holds if P (k) holds.

13 + 23 + · · ·+ k3 + (k + 1)3 = [13 + 23 + · · ·+ k3] + (k + 1)3

=

(
k(k + 1)

2

)2

+ (k + 1)3

=
k2(k + 1)2 + 4(k + 1)3

4

=
(k + 1)2(k2 + 4k + 4)

4

=
(k + 1)2(k + 2)2

4

=

(
(k + 1)(k + 2)

2

)2

.

Thus P (k + 1) holds.
As we checked that P (1) holds and that P (k) =⇒ P (k + 1), by the
principle of mathematical induction, P (n) holds for all n, that is,

13 + 23 + 33 + · · ·+ n3 =

(
n(n + 1)

2

)2

.

7. Not much; clearly this result is nonsense.
The problem happens when there are two cows, that is, the problem is
with the implication P (1) =⇒ P (2). Let’s suppose one of the cows is
brown and the other is grey. We pick the grey cow and put it to one
side (metaphorically speaking). It is true that the one remaining cow
is monochromatic.
The problem comes at the next stage. We are supposed to form a group
of k = 1 cows, from the cow we put to one side and any k − 1 of the
brown cows. It is again true that all of the cows have the same colour,
now grey. The problem is that k − 1 = 0 so that none of the group of
k cows is brown.
It is interesting to note that this is the only place where the argument
breaks down. In other words, if you have n objects and you know that
any pair of objects has the same colour then all n objects have the same
colour. The proof is the one sketched in question 7, the only difference
is we now start the induction at n = 2.
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8. There is clearly a problem with this argument. Somehow the issue
is with the notion of what constitutes a “surprise”, but it is hard to
exactly pinpoint the problem. In fact philosophers like to debate this
issue, at length.
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