
MODEL ANSWERS TO THE FOURTH HOMEWORK

1. Let P (n) be the statement that

(1 + x)n ≥ 1 + nx.

We want to prove that P (n) holds for all non-negative n. We proceed
by mathematical induction.
We first check that P (0) holds. If n = 0 the LHS is

(1 + x)n = (1 + x)0 = 1,

and the RHS is

1 + nx = 1.

As the LHS is at least the RHS, P (0) holds.
Now assume that P (k) holds. We check that P (k + 1) holds. We have

(1 + x)k+1 = (1 + x)k(1 + x)

≥ (1 + kx)(1 + x)

= 1 + kx + x + x2

= 1 + (k + 1)x + x2

≥ 1 + (k + 1)x,

where we got from the first line to the second line using the inductive
hypothesis P (k). Thus P (k + 1) holds.
As we checked that P (0) holds and that P (k) =⇒ P (k + 1) for every
k, by the principle of mathematical induction it follows that P (n) holds
for every n, that is,

(1 + x)n ≥ 1 + nx.

2. (a)

∅, { 1, 2 }, { 1, 3 }, { 1, 4 }, { 2, 3 }, { 2, 4 }, { 3, 4, }, { 1, 2, 3, 4 }.
(b)

{ 1 }, { 2 }, { 3 }, { 4 }, { 2, 3, 4 }, { 1, 3, 4 }, { 1, 2, 4 }, { 1, 2, 3 }.
3. (a) True.

{x ∈ R |x > 0, (x2 − 1)2 = 0 } = { 1 }
so that

{ { 1 }, {x ∈ R |x > 0, (x2 − 1)2 = 0 } }
has one element, { 1 }.
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(if we changed things slightly, and we looked at

|{ { 1 }, {x ∈ R |x > 0, (x2 + 1)2 = 0 } }| = 1.

we would get a false statement.

{x ∈ R |x > 0, (x2 − 1)2 = 0 } = ∅,
so that

{ { 1 }, {x ∈ R |x > 0, (x2 − 1)2 = 0 } }
has two elements, ∅ and { 1 }.)
(b) False.

{ ∅ }
is the set containing one element, the emptyset. The set

{ { ∅ }, 2 }.
does not contain the emptyset (even though it contains a set that con-
tains the emptyset).
(c) True.
The last set

{x ∈ R |x2 ≥ 0 }
is the set of all real numbers, R. So the set

{ 1,R, {x ∈ R |x2 ≥ 0 } }
has two, elements 1 and R.
4. (a) We have

A4 ∅ = A ∪ ∅ \ A ∩ ∅
= A \ ∅
= A.

(b) We have

A4 A = A ∪ A \ A ∩ A

= A \ A
= ∅.

(c) There are two ways to prove this.
The first is to prove this element by element. We first show that B ⊂ C.
Suppose that b ∈ B. We have to show that b ∈ C. There are two
cases. Suppose that b /∈ A. Then b ∈ B \ A so that b ∈ A4 B. Thus
b ∈ A4 C. As b /∈ A, b /∈ A \ C so that b ∈ C \ A. It follows that
b ∈ C.
Now suppose that b ∈ A. Then b /∈ A\B and b /∈ B \A so that A4B.
Therefore b /∈ A4C. In particular b /∈ A \C. As b ∈ A it follows that
b ∈ C.
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Either way, b ∈ C and so B ⊂ C. By symmetry C ⊂ B. It follows that
B = C.
Aliter:
We have

B = B 4 ∅
= B 4 (A4 A)

= (B 4 A)4 A

= (C 4 A)4 A

= C 4 (A4 A)

= C 4 ∅
= C,

where we used the identity

(E 4 F )4G = E 4 (F 4G),

to get from lines two to three and from lines four to five, we used (a)
on line one and to get from line six to seven and we used (b) to get
from line one to two and line five to line six.
5. Let B = A4 { 1 }. There are two cases.
Suppose that 1 /∈ A. Then B = A ∪ { 1 } has one more element than
A. It follows that

|B| = |A|+ 1.

Thus |A| is even if and only if |B| is odd.
Now suppose that 1 ∈ A. Then B = A \ { 1 } has one fewer element
than A. It follows that

|B| = |A| − 1 so that |A| = |B|+ 1.

Thus |B| is even if and only if |A| is odd.
Taking the contrapositive of both implications, we conclude that |A| is
even if and only if |B| is odd.
Either way |A| is even if and only if |B| is odd.
Challenge problems/Just for fun:
6. After quite a bit of trial and error, one realises the weights are 1, 3,
9 and 27.
One way to cut down on the trial and error is to realise that there are
exactly forty different ways to use four stones on a scale. You could
use 1, 2, 3 or all 4 stones. There is only one way to use one stone and
so there are 4 ways to use one of the four stones. There are two ways
to use two stones; put them all on side or put them either side. On the
other hand, there are 6 ways to pick two stones from four stones. So
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there are 12 ways to use two of the four stones. There are four ways
to use three stones; either put them all on one side, or put one on one
side and the other two on the other side. There are four ways to pick
three stones from four and so there are 16 = 4× 4 ways to use three of
the four stones. Finally suppose we use all four stones. We could put
all stones on one side, put one stone on one side, or divide the stones
in two groups of two; there are then 1 + 4 + 3 = 8 ways to use all four
stones.
Putting all of this together we get 4 + 12 + 16 + 8 = 40 ways to use all
four stones. This means there can be no duplication. There can only
be one way to weigh any weight between 1 and 40. So, for example,
if one stone weighs one pound the difference between any other two
stones is never one.
If there are n pieces, the weights are obviously

1, 3, 9, . . . , 3n−1.

This a geometric series with initial term 1 and ratio 3. The sum of the
series is

w =
1(1− 3n)

1− 3
=

3n − 1

2
.

7. Jan puts the ring into a box, puts a padlock onto the box and sends
it to Maria. The box has one padlock on it, Jan’s. Maria puts her own
padlock onto the same box and sends it back to Jan. The box now has
two padlocks, one is Jan’s and the other is Maria’s. Jan removes his
padlock and sends the box back to Maria. The box has one padlock on
it, Maria’s. Now Maria can unlock the box and take the ring.
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