
MODEL ANSWERS TO THE FIFTH HOMEWORK

1. (a)

∃ε > 0, ∀δ > 0, |x− 1| < δ ∧ |x2 − 1| > ε.

(b)

∃ε > 0, ∃x ∈ R, ∀n ∈ Z, |x− n| > ε.

(c)

∃ε > 0, ∃x ∈ R, ∀m,n ∈ Z, |x−m− nα| > ε.

2. (a) This is true and so we prove it. Let x = −2018. Then

y2 = |y|2

≥ 0

> −1

= 2017− 2018

= 2017 + x.

(b) This is true and so we prove it. Let x = y3 − 2018. Then

y3 = x+ 2018

> x+ 2017.

(c) This is false and so we disprove it, that is, we prove the negation

∀x ∈ R, ∃y ∈ R, y3 < 2017 + x.

There are two cases. If 2017 + x ≥ 0 then let y = −1. Then

y3 = −1

< 0

≤ 2017 + x.

Now suppose 2017 + x < 0. Let y = 2016 + x < 2017 + x.

y = 2016 + x

= 2017 + x− 1

< −1.

On the other hand,

|y| > |2017 + x| ≥ 1
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and so

y2 = |y|2

> |y|(2017 + x)

> 2017 + x.

We have

y3 = y · y2

< −y2

< 2017 + x.

(d) This is true and so we prove it. Pick an integer N such that

N >
1000

ε
.

If n > N then

1000

n
=

1000

n
· 1

=
1000

n
· ε
ε

=
ε

n
· 1000

ε

< ε · N
n

< ε · n
n

= ε · 1
= ε.

3. We prove the contrapositive, if L1 6= L2 then we can find ε > 0 such
that |L1 − L2| > ε.
As L1 6= L2, either L1 > L2 or L1 < L2. Suppose that L1 > L2. Then
L1 − L2 > 0. Let

ε =
L1 − L2

2
> 0.

Then

|L1 − L2| = L1 − L2

>
L1 − L2

2
= ε.
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If L1 < L2 then L2 > L1 and by symmetry

|L1 − L2| > ε =
L2 − L1

2
.

4.
∀ε > 0, ∃N ∈ Z, (n ≥ N) =⇒ |xn − a| < ε.

5. (a) We show that an ≥
√

2. It is easy to see that an > 0 and so it
suffices to show a2n ≥ 2. a1 = 2 ≥

√
2 (however, this won’t be a proof

by induction).
On the other hand,

a2n+1 − 2 =

(
an
2

+
1

an

)2

− 2

=

(
a2n + 2

2an

)2

− 2

=
(a2n + 2)2

4a2n
− 2

=
a4n + 4a2n + 4− 8a2n

4a2n

=
a4n − 4a2n + 4

4a2n

=
(a2n − 2)2

4a2n
≥ 0.

(b) We have

an+1 =
an
2

+
1

an

=
a2n + 2

2an

<
a2n + a2n

2an

=
2a2n
2an

= an,

where we used (a) to get from line 2 to line 3.
Challenge problems/Just for fun:
(c) We have already seen that

√
2 is a lower bound. We just have to

show there is no larger lower bound. Let α be the infimum, which we
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know exists, as the reals are complete. Then α ≥
√

2, as
√

2 is a lower
bound.
Let

β = −α +
√
α2 − 2.

Then β is a root of the quadratic equation

x2 + (−2α)x+ 2 = 0,

so that
β2 − 2αβ + 2 = 0.

Solving for α, it follows that

α =
β

2
+

1

β
.

As α ≥
√

2 it follows that β ≥ α. Suppose that β > α. As α is
the infimum of the sequence, and β is bigger than α, β is not a lower
bound. It follows that we can find n such that

an < β.

In this case

α ≤ an+1

=
an
2

+
1

an

<
β

2
+

1

β

= α,

which is a contradiction. It follows that

β = α

=
β

2
+

1

β
.

But then

α =
α

2
+

1

α
.

Solving for α we get
2α2 = α2 + 2,

so that
α2 = 2.

As α > 0 we must have α =
√

2.
6. (a)

∀d ∈ Z, ∃k ∈ Z, (kd = n) =⇒ (d = 1 ∨ (∃l ∈ Z, 2l = d)).
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If n is not a power of 2 then it has no odd divisor other than 1. There-
fore, it suffices to write down the condition that every divisor d of n is
either 1 or divisible by 2. d divides n if there is an integer k such that
kd = n. d is divisible by 2 if there is an integer l such that 2l = d.
(b)

∀d ∈ Z, ∃k ∈ Z, (kd = n) =⇒ (d = 1 ∨ (∃l ∈ Z, 5l = d)).

Just replace 2 by 5 (and use the fact that 5 is prime).
(c) The predicate P (n)

∀d ∈ Z, ∃k ∈ Z, (kd = n) =⇒ (d = 1∨ (∃l ∈ Z, (2l = d)∨ (5l = d)))

is only true if the only divisors d of n are 1, 2 and 5. This means
n = 2a5b. But how to impose the extra condition that a = b?
7. This is a very famous problem. To solve this problem, it helps to
state this problem in terms of graph theory (and to follow what is going
on it will help to draw some pictures). Imagine the people at the dinner
party as vertices of a graph, with an edge between every pair of vertices
(this is called a complete graph). Colour an edge red if the people
know each other and blue if they don’t. Three mutual acquaintances
corresponds to three red edges and three mutual strangers corresponds
to three blue edges.
So we have a red blue colouring of the edges of a complete graph with
n vertices and we want to make sure there is either a red or a blue
triangle. Clearly n ≥ 3. If there are three vertices colour two edges red
and one blue (or vice-versa). As there is no monochromatic triangle,
n = 3 does not work. If n = 4 there are six edges. Pick a square
and colour it blue and colour the other two edges red. As there is no
monochromatic triangle, n = 4 does not work. If n = 5 then there are
ten edges. Pick a pentagon and colour it blue; colour the remaining
five edges red. Call the vertices a, b, c, d and e and suppose we have
the obvious blue pentagon, ab, bc, cd, de and ea = ae. The other edges
are ac, ce, eb, bd and da, a red pentagon. As there is no red or blue
triangle, n = 5 does not work.
It turns out n = 6 works. Pick any vertex v. There are five edges
with endpoint v coloured red or blue. Suppose at least two edges are
coloured red. Then at least three edges are coloured blue. It follows
that at least three edges are coloured red or at least three edges are
coloured blue.
Let suppose at least three edges are coloured red. Suppose these edges
are va, vb and vc. Consider the subgraph with vertices a, b and c. The
three edges ab, ac and bc are coloured either red or blue. There are
two cases. If all three edges are blue then a, b and c is a blue triangle.
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Otherwise, one of the edges is red. Let’s suppose it is the edge ab
(after all, the names a, b and c of the vertices are arbitrary). Consider
the three vertices v, a and b. Every edge is red and so we have a red
triangle. Either way, we have a monochromatic triangle.
If at least three edges coming out of v are blue, by symmetry, we can
again argue that there is a monochromatic triangle.
So the answer is we need to invite six people.
8. Define a sequence of real numbers a1, a2, . . . by the rule

an =

{
0 if n = 1√

7 + an−1 if n > 1

One can check that an is monotonic increasing. If the supremum is α
then one can check, as in question 5, that

α =
√

7 + α.

Thus

α2 = 7 + α,

so that α is a root of the quadratic equation

x2 − x− 7 = 0,

It follows that

α =
1 +
√

29

2
≈ 3.1925824.
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The answer is 3. Indeed,

3 =
√

9

=
√

1 + 2 · 4

=

√
1 + 2 ·

√
16

=

√
1 + 2 ·

√
1 + 15

=

√
1 + 2 ·

√
1 + 3 · 5

=

√
1 + 2 ·

√
1 + 3 ·

√
25

=

√
1 + 2 ·

√
1 + 3 ·

√
1 + 24

=

√
1 + 2 ·

√
1 + 3 ·

√
1 + 4 · 6

=

√
1 + 2 ·

√
1 + 3 ·

√
1 + 4 ·

√
36

=

√
1 + 2 ·

√
1 + 3 ·

√
1 + 4 ·

√
1 + 35,

and so on.

7


