
MODEL ANSWERS TO THE SIXTH HOMEWORK

1. (a) This is true and so we prove it. Pick x ∈ R. We have to prove

(∀ε > 0, |x| < ε) =⇒ x = 0.

We prove the contrapositive, that is, we prove

x 6= 0 =⇒ (∃ε > 0, |x| ≥ ε)

If x > 0 then let ε = x/2. We have

|x| = x

> x/2

= ε.

If x < 0 then let ε = −x/2. We have

|x| = −x
> −x/2
= ε.

Either way, |x| > ε. This proves the contrapositive and so we have
proved

∀x ∈ R, ((∀ε > 0, |x| < ε) =⇒ x = 0) .

(b) This is false and so we disprove it, that is, we prove the negation

∃x ∈ R, ∃ε > 0, (|x| < ε ∧ x 6= 0).

This is easy. Take x = 1 and ε = 2. Then

|x| = 1 < 2 = ε and x = 1 6= 0.

Thus we have disproved

∀x ∈ R, ∀ε > 0, (|x| < ε =⇒ x = 0).

2. (a) Pick x ∈ X. We have to show

χA∩B(x) = χA(x)χB(x).

There are two cases. If χA∩B(x) = 1 then x ∈ A ∩ B. Therefore
x ∈ A and x ∈ B and so χA(x) = 1 and χB(x) = 1. But then
χA(x)χB(x) = 1 · 1 = 1.
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Otherwise χA∩B(x) = 0. In this case x /∈ A ∩ B. Therefore, either
x /∈ A or x /∈ B. Suppose x /∈ A. Then χA(x) = 0 and so

χA(x)χB(x) = 0 · 1
= 0.

By symmetry, if x /∈ B then χA(x)χB(x) = 0.
In all three cases

χA∩B(x) = χA(x)χB(x).

and so
χA∩B = χAχB.

(b) Pick x ∈ X. We have to show

χA(x) + χX\A(x) = χX(x).

Note that χX(x) = 1, independently of x, and so we have to show

χA(x) + χX\A(x) = 1.

There are two cases. If χA(x) = 0 then x /∈ A. But then x ∈ X \ A so
that χX\A(x) = 1. It follows that the LHS is

χA(x) + χX\A(x) = 0 + 1 = 1.

Otherwise χA(x) = 1 and so x ∈ A. But then x /∈ X \ A so that
χX\A(x) = 0. It follows that the LHS is

χA(x) + χX\A(x) = 1 + 0 = 1.

Either way,
χA + χX\A = χX .

(c) We have to show

χA∪B(x) = χA(x) + χB(x)− χAχB(x).

There are four cases. Suppose that x ∈ A but x /∈ B. Then x ∈ A∪B
and so the LHS is

χA∪B(x) = 1.

On the other hand, χA(x) = 1 and χB(x) = 0 so that the RHS

χA(x) + χB(x)− χAχB(x) = 1 + 0− 1 · 0 = 1.

We can prove the case x /∈ A and x ∈ B using symmetry.
Now suppose that x ∈ A and x ∈ B. Then x ∈ A ∪B and so the LHS
is

χA∪B(x) = 1.

On the other hand, χA(x) = 1 and χB(x) = 1 so that the RHS

χA(x) + χB(x)− χAχB(x) = 1 + 1− 1 · 1 = 1.
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Finally suppose that x /∈ A and x /∈ B. Then x /∈ A ∪ B and so the
LHS is

χA∪B(x) = 0.

On the other hand, χA(x) = 0 and χB(x) = 0 so that the RHS

χA(x) + χB(x)− χAχB(x) = 0 + 0− 0 · 0 = 0.

Since we have shown that

χA∪B(x) = χA(x) + χB(x)− χAχB(x).

in all four cases, we have proved that

χA∪B = χA + χB − χAχB.

(d) We claim that
(X \B) ∩ A = A \B.

It suffices to show a containment both ways. We first show that the
LHS is a subset of the RHS. If x ∈ (X \ B) ∩ A then x ∈ X \ B and
x ∈ A, that is, x /∈ B and x ∈ A. Therefore x ∈ A \ B. Now we show
RHS is a subset of the LHS. Suppose that x ∈ A \B. Then x ∈ A and
x /∈ B. As x ∈ X we x ∈ X \ B. But then x ∈ (X \ B) ∩ A. Thus we
have equality.
Note that we proved in (b) that

χB + χ(X\B) = 1,

and so
χ(X\B) = 1− χB.

We have

χA\B = χ(X\B)∩A

= χ(X\B)χA

= (1− χB)χA

= χA − χAχB,

where we used the claim on the first line, part (a) to get from line one
to line two and the observation above to get from line two to line three.
(e) We have

χA4B = χA\B + χB\A

= χA − χAχB + χB − χBχA

= χA + χB − 2χAχB,

where we use the definition of the symmetric difference on line one and
part (d), twice, to get from line one to line two.
Note that χA4B(x) = 1 if and only if χA4B(x) is odd.

3



On the other hand,

χA(x) + χB(x)− 2χAχB(x),

is odd, if and only if there is an integer k such that

χA(x) + χB(x)− 2χAχB(x) = 2k + 1.

Suppose that l = χA(x)χB(x). Then

χA(x) + χB(x) = 2(k + l) + 1,

so that χA(x) + χB(x) is odd, as k + l is an integer. Therefore

(χA4B(x) = 1) ⇐⇒ (χA(x) + χB(x) is odd).

(f) Suppose that

∀x ∈ X, χA(x) ≤ χB(x).

We show that A ⊂ B.
Pick a ∈ A. Then, by definition of χA, we have χA(a) = 1. As

1 = χA(a) ≤ χB(a),

and the only possible values of χB(a) are 0 or 1, we must have χB(a) =
1. But then by definition of χB, we have a ∈ B. It follows that A ⊂ B.
Now suppose that A ⊂ B. We show that

∀x ∈ X, χA(x) ≤ χB(x).

Pick x ∈ X. There are two cases.
If χB(x) = 0 then, by definition of χB, we have x /∈ B. As A ⊂ B
it follows that x /∈ A. But then by definition of χA, χA(x) = 0. In
particular

χA(x) = 0

= χB(x).

Thus χA(x) ≤ χB(x).
Now suppose that χB(x) = 1. As χA(x) is either 0 or 1, we have

χA(x) ≤ 1

= χB(x).

Either way, χA(x) ≤ χB(x).
Thus

∀x ∈ X, χA(x) ≤ χB(x).

Note that χA = χB if and only if χA ≤ χB and χB ≤ χA. Similarly,
A = B if and only if A ⊂ B and B ⊂ A. Therefore

(χA = χB) ⇐⇒ (A = B).
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3. We first check that Θ is injective. Suppose that A and B ∈ ℘(X)
and Θ(A) = Θ(B). Then A and B are two subsets of X and χA = χB.
2 (f) implies that A = B. Thus Θ is injective.
Now we check that Θ is surjective. Suppose that f ∈ { 0, 1 }X . Then
f is a function from X to { 0, 1 }. Define a subset A of X as follows

A = {x ∈ X | f(x) = 1 }.
We check that χA = f . Both sides are functions from X to { 0, 1 }. We
check they have the same effect on x ∈ X.
There are two cases. If f(x) = 1 then x ∈ A, by definition of A, and
so χA(x) = 1. If f(x) = 0 then x /∈ A, by definition of A, and so
χA(x) = 0. Either way, χA(x) = f(x) and so f = χA = Θ(A). Thus Θ
is surjective.
It follows that Θ is a bijection.
4. (a) Suppose that a1 and a2 ∈ A and that (g ◦ f)(a1) = (g ◦ f)(a2).
Let b1 = f(a1) and b2 = f(a2). We have

g(b1) = g(f(a1))

= (g ◦ f)(a1)

= (g ◦ f)(a2)

= g(f(a2))

= g(b2).

As g is injective, it follows that b1 = b2. But then

f(a1) = b1

= b2

= f(a2).

As f is injective, it follows that a1 = a2. Therefore f ◦ g is injective.
(b) Suppose that c ∈ C. As g is surjective we can find b ∈ B such that
g(b) = c. As f is surjective, it follows that we can find a ∈ A such that
f(a) = b. We have

(g ◦ f)(a) = g(f(a))

= g(b)

= c.

Thus g ◦ f is surjective.
(c) This is immediate from (a) and (b).
Challenge problems/Just for fun:
5. We first show the easy direction. Suppose that we can marry off
every boy. Then we can find an injective function from the set of boys
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to the set of girls. If we have a subset of k boys then the image of this
set under the function is a set of k girls. Thus every set of boys knows
at least this many girls.
Now we turn to the hard direction. Suppose every subset of the boys
knows at least as many girls. We find a way to marry off the boys.
Let m be the number of boys. We proceed by induction on m. If m = 1
there is one boy who knows at least one girl. Pick any one of the girls
and marry them off.
Now suppose that know the result for any collection of at most m boys
and that there are m+ 1 boys. Suppose that every collection of k ≤ m
boys knows more girls. Pick any boy and marry them off to a girl.
Then the remaining m boys have the property that any subset knows
at least as many of the remaining girls. By induction we can marry off
all the boys.
So we may assume that for some k < m + 1 there are k boys who
know exactly k girls. By induction we can marry off all these boys.
Consider a subset of the remaining m + 1 − k boys. Suppose there
are l boys who know fewer than l of the remaining girls. Consider this
subset union the original k boys. There are k + l boys and they will
know at most l − 1 + k girls, contrary to our assumption. As this is a
contradiction, it must be the case that every subset of the m + 1 − k
remaining boys knows the at least as many girls, and so we can marry
of these remaining boys by induction.
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