
MODEL ANSWERS TO THE SEVENTH HOMEWORK

1. Let X be a finite set, and let A, B and A1, A2, . . . , An be subsets of
X. Let Ac = X \ A denote the complement.
(a) ∑

x∈X

χA(x) = |A|.

(b) We proved in homework six, question 2 (c) that

χA∪B = χA + χB − χAχB.

But we also proved homework six, question 2 (a) that

χA∩B = χAχB.

Thus
χA∪B = χA + χB − χA∩B.

It follows that for every x ∈ X
χA∪B(x) = χA(x) + χB(x)− χA∩B(x).

Summing over x ∈ X we get∑
x∈X

χA∪B(x) =
∑
x∈X

χA(x) +
∑
x∈X

χB(x)−
∑
x∈X

χA∩B(x).

Applying part (a) to each term we get

|A ∪B| = |A|+ |B| − |A ∩B|.
(c) We show the LHS is a subset of the RHS and vice-versa. If a ∈
Ac ∩ Bc then a ∈ Ac and a ∈ Bc. Then a /∈ A and a /∈ B. It follows
that a /∈ A ∪ B. Thus a ∈ (A ∪ B)c. Therefore the RHS is a subset of
the LHS.
Now suppose that a ∈ (A ∪ B)c. Then a /∈ A ∪ B. Thus a /∈ A and
a /∈ B. But then a ∈ Ac and a ∈ Bc. Thus a ∈ Ac ∩Bc. Therefore the
LHS is a subset of the RHS.
As we have containment both ways, we have proved that

Ac ∩Bc = (A ∪B)c.

(d) Let P (n) be the statement that

χ(∪ni=1Ai)c =
n∏

i=1

(1− χAi
).

We prove P (n) holds by induction on n.
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If n = 1 then the LHS is

χ(∪ni=1Ai)c = χAc
1

= χX\A1

= 1− χA1

and the RHS
n∏

i=1

(1− χAi
) = 1− χA1 .

As both sides are equal, P (1) holds.
Now suppose that P (k) holds. Let

A =
k⋃

i=1

Ai and B = Ak+1.

Then

χ(∪k+1
i=1 Ai)c

= χA∪B)c

= χAc∩Bc

= χAcχBc

=

(
k∏

i=1

(1− χAi
)

)
(1− χAK+1

)

=
k+1∏
i=1

(1− χAi
),

where we used part (c) to get from line one to line two, homework 6,
question 2, part (a) to get from line two to line three and the induction
hypothesis to get from line three to line four. Thus P (k + 1) holds.
As we have show that P (1) holds and that P (k) =⇒ P (k+ 1), by the
principle of mathematical induction, it follows that P (n) holds for all
n, that is,

χ(∪ni=1Ai)c =
n∏

i=1

(1− χAi
).

(e) Let P (n) be the statement that

n∏
i=1

(1− xi) =
n∑

k=0

(−1)k
∑

1≤i1<i2<i3<···<ik≤n

xi1xi2 . . . xik .

We prove P (n) holds by induction on n.
2



If n = 1 then the LHS is
n∏

i=1

(1− xi) =
n∏

i=1

(1− xi)

= (1− x1).
and the RHS is
n∑

k=0

(−1)k
∑

1≤i1<i2<i3<···<ik≤n

xi1xi2 . . . xik =
1∑

k=0

(−1)k
∑

1≤i1<i2<i3<···<ik≤1

xi1xi2 . . . xik

= 1− x1.
As both sides are equal, P (1) holds.
Now suppose that P (m) holds (we don’t use k simply because k appears
in the formula). We have

m+1∏
i=1

(1− xi) = (1− xm+1)
m∏
i=1

(1− xi)

= (1− xm+1)

(
m∑
k=0

(−1)k
∑

1≤i1<i2<i3<···<ik≤m

xi1xi2 . . . xik

)

=
m∑
k=0

(−1)k
∑

1≤i1<···<ik≤m

xi1xi2 . . . xik − xm+1

(
m∑
k=0

(−1)k
∑

1≤i1<···<ik≤n

xi1xi2 . . . xik

)

=
m∑
k=0

(−1)k
∑

1≤i1<···<ik≤m

xi1xi2 . . . xik +
m∑
k=0

(−1)k+1
∑

1≤i1<···<ik≤m

xi1xi2 . . . xikxm+1

=
m∑
k=0

(−1)k
∑

1≤i1<i2<···<ik≤m

xi1xi2 . . . xik +
m+1∑
k=1

(−1)k
∑

1≤i1<i2<···<ik=m+1

xi1xi2 . . . xik

=
m+1∑
k=0

(−1)k
∑

1≤i1<i2<i3<···<ik≤m+1

xi1xi2 . . . xik ,

where we used the inductive hypothesis to get from line one to line two.
By mathematical induction it follows that P (n) holds for all n. It
follows that

χ(∪ni=1Ai)c =
n∑

k=0

(−1)k
∑

1≤i1<i2<i3<···<ik≤n

χ∩kj=1Aij

= 1− (χA1 + · · ·+ χAn) + (χA1∩A2 + · · ·+ χAn−1∩An) + · · ·+ (−1)nχA1∩A2···∩An ,

substituting xi = χAi
and using the fact that

χ∩Ai
=
∏

χAi
.
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(f) If we sum over x ∈ X we get∑
x∈X

(χ(∪ni=1Ai)c) =
n∑

k=0

(−1)k
∑

1≤i1<i2<i3<···<ik≤n

∑
x∈X

χ∩kj=1Aij
.

It follows that

|(∪ni=1Ai)
c| =

n∑
k=0

(−1)k
∑

1≤i1<i2<i3<···<ik≤n

| ∩k
j=1 Aij |.

As

|(∪ni=1Ai)
c| = |X| − | ∪ni=1 Ai|

and ∑
x∈X

1 = |X|,

we conclude that

|X| − | ∪ni=1 Ai| = |X| −
n∑

k=1

(−1)k−1
∑

1≤i1<i2<i3<···<ik≤n

| ∩k
j=1 Aij |.

so that

|
n⋃

i=1

Ai| =
n∑

k=1

(−1)k−1
∑

1≤i1<i2<i3<···<ik≤n

|
k⋂

j=1

Aij |.

2. (a)

|A∪B∪C| = |A|+ |B|+ |C|− |B∩C|− |A∩C|− |A∩B|+ |A∩B∩C|.

(b) Let A be the integers between 1 and 1000 divisible by 2, B be
the integers between 1 and 1000 divisible by 3 and C be the integers
between 1 and 1000 divisible by 5, so that

A = { k ∈ Z | 1 ≤ k ≤ 1000, k is divisible by 2 }
B = { k ∈ Z | 1 ≤ k ≤ 1000, k is divisible by 3 }
C = { k ∈ Z | 1 ≤ k ≤ 1000, k is divisible by 5 }.

We use the formula in (a) to count the number of elements of A∪B∪C.
These are the integers divisible by at least one of 2, 3, or 5. Suppose
that a ∈ A. Then we can find k ∈ Z such that a = 2k. As 1 ≤ a ≤
1000, we have 1 ≤ k ≤ 500. Thus

|A| = 500

Similarly,

|C| = 200.
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Now b ∈ B if and only if b = 3k, some integer k. As 1 ≤ b ≤ 1000,
1 ≤ k ≤ 333. Thus

|B| = 333.

Now

A ∩B = { k ∈ Z | 1 ≤ k ≤ 1000, k is divisible by 6 }.
Thus a ∈ A ∩ B if and only if a = 6k for some integer k. We have
1 ≤ k ≤ 166. Thus

|A ∩B| = 166.

Similarly
|A ∩ C| = 100 and |B ∩ C| = 66.

Finally,

A ∩B ∩ C = { k ∈ Z | 1 ≤ k ≤ 1000, k is divisible by 30 }.
Thus a ∈ A∩B ∩C if and only if a = 30k for some integer k. We have
1 ≤ k ≤ 33. Thus

|A ∩B ∩ C| = 33.

It follows that

|A ∪B ∪ C| = |A|+ |B|+ |C| − |B ∩ C| − |A ∩ C| − |A ∩B|+ |A ∩B ∩ C|
= 500 + 333 + 200− 166− 100− 66 + 33

= 734.

Thus the number of integers between 1 and 1, 000 not divisible by one
of 2, 3 or 5 is

266.

3. (a) Suppose that f is injective and A is not the emptyset. We
have to show that there is a function g : B −→ A such that g ◦ f =
idA : A −→ A. Pick an element a0 of A. Define a function

g : B −→ A

as follows. If b ∈ B there are two cases. If there is an element a ∈ A
such that f(a) = b then define g(b) = a. Note that a is unique by
injectivity. If there is no such element then define g(b) = a0.
We check that g ◦ f = idA. As both sides of the equation are functions
from A to A it suffices to check that they have the same effect on
arbitrary element a ∈ A. Let b = f(a). Then g(b) = a by definition of
g.

(g ◦ f)(a) = g(f(a))

= a

= idA(a),
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where we used the observation above to get from line one to line two.
We now prove the other direction. If A is the emptyset then there is
only one function from A to B and this function is injective. Other-
wise suppose that there is a function g : B −→ A such that g ◦ f =
idA : A −→ A. We check that f is injective.
Suppose that a1 and a2 ∈ A and f(a1) = f(a2). If we apply g to both
sides we get

a1 = idA(a1)

= (g ◦ f)(a1)

= g(f(a1))

= g(f(a2))

= (g ◦ f)(a2)

= idA(a2)

= a2.

Thus f is injective.
(b) Suppose that f is surjective. Define a function g : B −→ A as
follows. If b ∈ B then pick an element a of A such that f(a) = b. As
f is surjective we may find at least one such element. We check that
f ◦ g = idB : B −→ B. As both sides are functions from B to B, we
just have to check they have the same effect on an element b of B. We
have

(f ◦ g)(b) = f(g(b))

= f(a)

= b

= idB(b),

where we used the definition of g to get from line one to line two. Thus
f ◦ g = idB.
Now suppose that we may find a function g : B −→ A such that f ◦g =
idB : B −→ B. Suppose that b ∈ B and let a = g(b). We have

f(a) = f(g(b))

= (f ◦ g)(b)

= idB(b)

= b.

Thus f is surjective.
4. First suppose that B is the emptyset. Then A has to be the emptyset
as there is a function from A to B. As A and C are in bijection, it
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follows that C is the emptyset. In this case f and g are bijections and
the result is clear.
By assumption g ◦ f : A −→ C is a bijection. It follows that there is a
function h : C −→ A such that h ◦ (g ◦ f) = idA and (g ◦ f) ◦ h = idC .
We have

idA = h ◦ (g ◦ f)

= (h ◦ g) ◦ f.

It follows that f is injective by 3 (a). Similarly, We have

idC = (g ◦ f) ◦ h
= g ◦ (f ◦ h).

By 3 (b) it follows that g is surjective.
Suppose that f is surjective. Then f is bijective. It follows that f is
invertible. Let k : B −→ A be the inverse of f . Then k is a bijection.
As the composition of bijections is a bijection, we have (g ◦ f) ◦ k is a
bijection. On the other hand, we have

(g ◦ f) ◦ k = g ◦ (f ◦ k)

= g ◦ idB

= g.

Thus g is a bijection. In particular it is injective.
Now suppose that g is injective. Then g is a bijection. Let k : A −→ B
be the inverse of g. Then k is a bijection. As the composition of
bijections is a bijection, we have k ◦ (g ◦ f) is a bijection. On the other
hand, we have

k ◦ (g ◦ f) = (k ◦ g) ◦ f
= idA ◦ f
= f.

Thus f is a bijection. In particular f is surjective.
Challenge problems/Just for fun:
5. (a) If G has zero or one vertices then the degree function is injective.
So we may assume that G has at least two vertices and we have to show
that the degree function is not injective. There are n numbers between
0 and n − 1. But if one vertex has degree 0 there are no vertices
of degree n − 1 and if there is a vertex of degree n − 1 there are no
vertices of degree 0. Thus we must miss one of the n numbers from
zero to n− 1. As there n vertices and at most n− 1 possible degrees,
the degree sequence cannot be injective, by the pigeonehole principle.
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(b) If n = 0 then G has no vertices and no edges. If n = 1 then G has
one vertex and one edge. So we may assume that n ≥ 2.
There are two cases. Suppose that there is a vertex of degree zero.
Then there is no vertex of degree n − 1 and we must get all of the
numbers from 0 to n− 2. If we remove the vertex of degree zero then
we get a graph with n− 1 vertices and no vertex of degree zero.
If there is a vertex of degree n − 1 then consider the complement of
G, the graph H you get by putting an edge in H is there is no edge
in G. Then H has a vertex of degree zero, corresponding to the vertex
of degree n − 1 in G and H has vertices of every degree up to n − 2.
Thus there are two graphs where the degree function misses precisely
one number from zero to n− 1.
One can construct the graphs recursively as follows. Start with the
graph with two vertices and no edges. Take its complement to get the
graph with two vertices and one edge. Now add a vertex of degree zero,
to get a graph with three vertices. Take its complement to get another
graph with three vertices and then add a vertex of degree zero to get
a graph with four vertices, and so on.
Formally, let G1, G2, . . . be the graphs with a vertex of degree zero
and let H1, H2, . . . be the graphs with a vertex of degree n− 1. G2 is
the graph with two vertices and no edges. If we have constructed Gn

then Hn is the complement of Gn and Gn+1 is constructed from Hn by
adding a vertex of degree zero.
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