MODEL ANSWERS TO THE EIGHTH HOMEWORK

1. Let $P(n)$ be the statement that

$$
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k} .
$$

We prove $P(n)$ holds for all natural numbers n by induction on n. If $n=0$ the LHS is

$$
(x+y)^{0}=1
$$

and the RHS is

$$
\begin{aligned}
\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k} & =\sum_{k=0}^{0}\binom{0}{k} x^{k} y^{0-k} \\
& =\binom{0}{0} x^{0} y^{0} \\
& =1
\end{aligned}
$$

As we have equality, $P(0)$ holds.
Now suppose that $P(m)$ holds. We check that $P(m+1)$ holds. We have

$$
\begin{aligned}
(x+y)^{m+1} & =(x+y)(x+y)^{m} \\
& =(x+y) \sum_{k=0}^{m}\binom{m}{k} x^{k} y^{m-k} \\
& =x \sum_{k=0}^{m}\binom{m}{k} x^{k} y^{m-k}+y \sum_{k=0}^{m}\binom{m}{k} x^{k} y^{m-k} \\
& =\sum_{k=0}^{m}\binom{m}{k} x^{k+1} y^{m-k}+\sum_{k=0}^{m}\binom{m}{k} x^{k} y^{m-k+1} \\
& =\sum_{k=1}^{m+1}\binom{m}{k-1} x^{k} y^{m-k+1}+\sum_{k=0}^{m}\binom{m}{k} x^{k} y^{m-k+1} \\
& =y^{m+1}+\sum_{k=1}^{m}\left(\binom{m}{k-1}+\binom{m}{k}\right) x^{k} y^{m-k+1}+x^{m+1} \\
& =\sum_{k=0}^{m+1}\binom{m+1}{k} x^{k} y^{m-k+1},
\end{aligned}
$$

where we use the inductive hypothesis to get from line one to line two and the fact that

$$
\binom{n}{k-1}+\binom{n}{k}=\binom{n+1}{k}
$$

to get from line seven to line eight. Thus $P(k+1)$ holds.
Thus $P(n)$ holds for all natural numbers n, by mathematical induction, that is

$$
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k} .
$$

2. Suppose that the elements of A are $a_{1}, a_{2}, \ldots, a_{m}$ and the elements of B are $b_{1}, b_{2}, \ldots, b_{n}$.
(a) A function $f: A \longrightarrow B$ is specified by choosing the images of the elements of A. For each $1 \leq i \leq m$ there are n choices for $f\left(a_{i}\right)$, one of $b_{1}, b_{2}, \ldots, b_{n}$. Thus there are n^{m} functions from A to B,

$$
\left|B^{A}\right|=n^{m}=|B|^{|A|} .
$$

(b) There are two cases. If $m>n$ then there are no injective functions from A to B by the pigeonhole principle, so that $I=\emptyset$ and $|I|=0$. On the other hand

$$
|I|=n(n-1) \ldots(n-m+1)
$$

is zero, as one of the factors is zero. As both sides are zero, we have equality when $m>n$.
It remains to deal with interesting case when $m \leq n$. An injective function $f: A \longrightarrow B$ is specified by choosing the images of the elements of A. Now we pick the elements one at a time. There are n choices for $f\left(a_{1}\right)$. Having chosen the image of a_{1} there are then $n-1$ choices for $f\left(a_{2}\right)$, we must make sure we don't send a_{2} to $f\left(a_{1}\right)$. Suppose we have chosen the image of $f\left(a_{1}\right), f\left(a_{2}\right), \ldots, f\left(a_{k}\right), 1 \leq k \leq m-1$. There are $n-k$ choices for where to send $f\left(a_{k+1}\right)$.
Thus, by an obvious induction, we have

$$
|I|=n(n-1) \ldots(n-m+1),
$$

3. (a) It is enough to show that $(0,1)$ and (a, b) have the same cardinality. Let

$$
f:(0,1) \longrightarrow(a, b)
$$

be the function $f(x)=a+(b-a) x$. Note that if $x \geq 0$ then

$$
\begin{aligned}
a+(b-a) x & \geq a+(b-a) \cdot 0 \\
& =a .
\end{aligned}
$$

On the other hand, if $x \leq 1$ then

$$
\begin{aligned}
a+(b-a) x & \leq a+(b-a) \cdot 1 \\
& =b .
\end{aligned}
$$

Thus $f(x) \in(a, b)$ and so f is well-defined.
Let

$$
g:(a, b) \longrightarrow(0,1)
$$

be the function

$$
g(x)=\frac{x-a}{b-a} .
$$

Note that if $x \geq a$ then

$$
\begin{aligned}
\frac{x-a}{b-a} & \geq \frac{0}{b-a} \\
& =0 .
\end{aligned}
$$

On the other hand, if $x \leq b$ then

$$
\begin{aligned}
\frac{x-a}{b-a} & \leq \frac{b-a}{b-a} \\
& =1
\end{aligned}
$$

Thus $g(x) \in(0,1)$ and so g is well-defined. On the other hand

$$
\begin{aligned}
(g \circ f)(x) & =g(f(x)) \\
& =g(a+(b-a) x) \\
& =\frac{a+(b-a) x-a}{b-a} \\
& =x \\
& =\operatorname{id}_{(0,1)}(x) .
\end{aligned}
$$

Thus $g \circ f=\mathrm{id}_{(0,1)}$. Similarly

$$
\begin{aligned}
(f \circ g)(x) & =f(g(x)) \\
& =f\left(\frac{x-a}{b-a}\right) \\
& \left.=a+(b-a) \frac{x-a}{b-a}\right) \\
& =a+x-a \\
& =x \\
& =\operatorname{id}_{(a, b)}(x) .
\end{aligned}
$$

Thus $f \circ g=\operatorname{id}_{(a, b)}$. It follows that g is the inverse of f so that f is a bijection. Thus $(0,1)$ and (a, b) have the same cardinality. By
symmetry $(0,1)$ and (c, d) have the same cardinality. Thus (a, b) and (c, d) have the same cardinality.
(b) Let

$$
f:(0,1) \longrightarrow \mathbb{R}
$$

be the map given by

$$
f(x)=\frac{1}{1-x}-\frac{1}{x}=\frac{2 x-1}{(1-x) x}
$$

First note that f is defined on the open interval. It is somewhat of a pain to check using elementary methods that f is a bijection (since we have to solve quadratic equations).
If one assumes the standard results of calculus it is very straightforward. First note that f is continuous with a continuous derivative. Further the derivative of f is always positive, so that f is monotonic increasing. It follows that f is injective. As x approaches zero, $f(x)$ approaches $-\infty$; as x approaches one, $f(x)$ approaches ∞. As f is continuous, it follows that f is surjective by the intermediate value theorem.
(c) We showed in (a) that (a, b) has the same cardinality as $(0,1)$ and we showed in (b) that $(0,1)$ has the same cardinality as \mathbb{R}. It follows that (a, b) has the same cardinality as \mathbb{R}.
4. (a) Not injective. In fact $(0,0)$ and $(2,3)$ are two different points of the domain with the same image 0 .
This function is surjective. If $n \in \mathbb{Z}$ then

$$
f(n, n)=3 n-2 n=n
$$

(b) This function is injective and surjective. In fact l is its own inverse,

$$
\begin{aligned}
(l \circ l)(B) & =l(A \triangle B) \\
& =A \triangle(A \triangle B) \\
& =(A \triangle A) \triangle B \\
& =\emptyset \triangle B \\
& =B \\
& =\operatorname{id}_{B}(B),
\end{aligned}
$$

where we used some basic properties of the symmetric difference we established in previous homeworks. As l is invertible, it is a bijection.
(c) If $Y=X$ then

$$
\begin{aligned}
r(B) & =X \cap B \\
& =B \\
& =\operatorname{id}_{\wp_{(X)}}(B),
\end{aligned}
$$

so that $r=\operatorname{id}_{\wp_{(X)}}$. In this case r is a bijection.
Now suppose that Y is a proper subset. Then r is not injective but it is surjective. Note that $r(\emptyset)=\emptyset \cap Y=\emptyset$. As Y is a proper subset it follows that we can find $x \in X \backslash Y$. Let $B=\{x\} \in \wp(X)$, the subset of X with the single element x. Then $r(B)=\{x\} \cap Y=\emptyset$. As $B \neq \emptyset$ it follows that r is not injective.
Now suppose that $C \in \wp(Y)$. Then $C \subset Y \subset X$. Thus $C \subset X$ and so $C \in \wp(X) . r(C)=C \cap Y=C$. Thus r is surjective.
5. (a) We proved in a previous homework that if $A \in \wp(I)$, that is, $A \subset I$, then $A \in X_{E}$ if and only if $A \triangle\{1\} \in X_{O}$. It follows that f and g are indeed well-defined functions.
(b) We check that g is the inverse of $f . g \circ f$ and $\operatorname{id}_{X_{E}}$ are both functions from X_{E} to itself. So to check that $g \circ f=\operatorname{id}_{X_{E}}$ we just have to check they have the same effect on $A \in X_{E}$. We have

$$
\begin{aligned}
(g \circ f)(A) & =g(f(A)) \\
& =g(A \triangle\{1\}) \\
& =(A \triangle\{1\}) \triangle\{1\} \\
& =A \triangle(\{1\} \triangle\{1\}) \\
& =A \triangle \emptyset \\
& =A .
\end{aligned}
$$

Thus $g \circ f=\operatorname{id}_{X_{E}}$. By symmetry $f \circ g=\operatorname{id}_{X_{O}}$. Thus f and g are inverses of each other and so X_{E} and X_{O} have the same cardinalit.

Challenge problems/Just for fun:

6. Show that
(a) We apply the binomial theorem to $x=y=1$. Then

$$
\begin{aligned}
2^{n} & =(1+1)^{n} \\
& =(x+y)^{n} \\
& =\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k} \\
& =\sum_{k=0}^{n}\binom{n}{k} 1^{k} 1^{n-k} \\
& =\sum_{k=0}^{n}\binom{n}{k} .
\end{aligned}
$$

(b) We apply the binomial theorem to $x=-1$ and $y=1$. Then

$$
\begin{aligned}
0 & =0^{n} \\
& =(-1+1)^{n} \\
& =(x+y)^{n} \\
& =\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k} \\
& =\sum_{k=0}^{n}\binom{n}{k}(-1)^{k} 1^{n-k} \\
& =\sum_{k=0}^{n}(-1)^{k}\binom{n}{k} .
\end{aligned}
$$

7. Let X be any set. Show that X and 2^{X} never have the same cardinality.
This will be proved in class.
