
MODEL ANSWERS TO THE NINTH HOMEWORK

1. (a) As A and B have the same cardinality there is a bijection
f : A −→ B.
Define a function

F : ℘(A) −→ ℘(B),

by sending the element X ∈ ℘(A) to

F (X) = { f(x) |x ∈ X }.
As f is a bijection, it has an inverse g. Using g we may write down a
function

G : ℘(B) −→ ℘(A),

by sending the element Y ∈ ℘(B) to

G(Y ) = { g(y) | y ∈ Y }.
We check that G is the inverse of F . We have to check that G ◦ F =
id℘(A)

and F ◦G = id℘(B)
.

We first check that G ◦ F = id℘(A)
. Both sides are functions from

℘(A) to itself. We have

(G ◦ F )(X) = G(F (X))

= G({ f(x) |x ∈ X })

= ({ g(f(x)) |x ∈ X })

= ({ (g ◦ f)(x)) |x ∈ X })

= ({x |x ∈ X })

= X

= id℘(A)
(X).

Thus G ◦ F = id℘(A)
. F ◦ G = id℘(B)

by symmetry. Thus F and G

are inverses of each other. Hence F is a bijection and so ℘(A) has the
same cardinality as ℘(B).
(b) As A1 and A2 have the same cardinality there is a bijection f1 : A1 −→
A2. As B1 and B2 have the same cardinality there is a bijection
g1 : B1 −→ B2. Let X = A1 ∪B1 and Y = A2 ∪B2. Define a function

h1 : X −→ Y
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by the rule

h1(x) =

{
f1(x) if x ∈ A1

g1(x) if x ∈ B1.

Note that x does not belong to both A1 and B1 and so h1 is a well-
defined function.
As f1 and g1 are bijections they have inverses f2 : A2 −→ A1 and
g2 : B2 −→ B1. Define a function

h2 : Y −→ X

by the rule

h2(x) =

{
f2(x) if x ∈ A2

g2(x) if x ∈ B2.

Note that x does not belong to both A2 and B2 and so h2 is a well-
defined function.
We check that h2 is the inverse of h1. We check that h2 ◦ h1 = idX .
Both sides are functions from X to X. If x ∈ X then there are two
cases. If x ∈ A1 then h1(x) = f1(x) ∈ A2. Thus

(h2 ◦ h1)(x) = h2(h1(x))

= h2(f1(x))

= f2(f1(x))

= (f2 ◦ f1)(x)

= idX(x).

We can handle the case x ∈ B1 by symmetry. Thus h2 ◦ h1 = idX . It
follows that h1 ◦ h2 = idY by symmetry. Thus h2 is the inverse of h1.
It follows that A1 ∪B1 has the same cardinality as A2 ∪B2.
(c) As A1 and A2 have the same cardinality there is a bijection f1 : A1 −→
A2. As B1 and B2 have the same cardinality there is a bijection
g1 : B1 −→ B2. Define a function

h1 : A1 ×B1 −→ A2 ×B2,

by the rule

h1(a1, b1) = (f1(a1), g1(b1)).

As f1 and g1 are bijections they have inverses f2 : A2 −→ A1 and
g2 : B2 −→ B1. Define a function

h2 : A2 ×B2 −→ A1 ×B1,

by the rule

h2(a2, b2) = (f2(a2), g2(b2)).
2



We check that h2 is the inverse of h1. We first check that h2 ◦ h1 =
idA1×B1 . We have

(h2 ◦ h1)(a1, b1) = h2(h1(a1, b1))

= h2(f1(a1), g1(b1))

= (f2(f1(a1)), g2(g1(b1)))

= ((f2 ◦ f1)(a1), (g2 ◦ g1)(b1))
= (a1, b1)

= idA1×B1(a1, b1).

Thus h2 ◦ h1 = idA1×B1 . By symmetry h1 ◦ h2 = idA2×B2 .
Thus h2 is the inverse of h1 and so h1 is a bijection. But then A1×B1

has the same cardinality as A2 ×B2.
2. (a) We have already proved that n ≤ 2n (besides, it is also a trivial
case of Cantor’s theorem), so that n < 2n+1. Thus the set

A = {m ∈ N |n < 2m+1 }

is non-empty. Let m be the smallest element of this set. Then n < 2m+1

as m ∈ A.
We check that 2m ≤ n. There are two cases. If m = 0 then 2m = 1 ≤ n.
Otherwise m > 0. As m ∈ A is the smallest element, m− 1 /∈ A. Thus
2m = 2m−1+1 ≤ n. It follows that we may always find m such that
2m ≤ n < 2m+1. If l is another natural number with the same property
then l ∈ A. m ≤ l by definition of m. If l > m then l ≥ m + 1 and so
n < 2m+1 ≤ 2l, a contradiction. Thus l = m. This proves uniqueness.
(b) Let P (n) be the statement that we may find a unique decreasing
sequence of integers m1,m2, . . . ,mk such that

n = 2m1 + 2m2 + · · ·+ 2mk .

Note that P (1) holds since

1 = 20,

and this is the only way to write 1 as a sum of powers of 2.
Now suppose that P (l) holds for all l ≤ n. By (a) we may find a unique
integer m = m1 such that

2m1 ≤ n + 1 < 2m1+1.

Let

l = n + 1− 2m1 .

If l = 0 then we are done. Otherwise l is a natural number such that
0 < l ≤ n. Therefore P (l) holds and we may find unique distinct
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natural numbers such that

l = 2m2 + · · ·+ 2mk

It follows that

n + 1 = 2m1 + 2m2 + · · ·+ 2mk .

By assumption mi > mi+1 for i > 1. Note that

2m2 ≤ n + 1.

Thus m2 ≤ m1 by definition of m1. Suppose that m1 = m2. Then

n + 1 ≥ 2m1 + 2m1

= 2 · 2m1

= 2m1+1,

contrary to our choice of m1. Thus m1 > m2.
Suppose that there is another way to write n+1 as a sum of decreasing
integers:

2p1 + 2p2 + · · ·+ 2pa = 2q1 + 2q2 + · · ·+ 2qb .

Suppose that p1 < q1. As

2p2 + · · ·+ 2pa ≤ 2p2+1 − 1,

it follows that p2 ≥ p1, a contradiction. Thus p1 = q1 by symmetry.
But then

2p2 + · · ·+ 2pa = 2q2 + · · ·+ 2qb .

By induction a = b and pi = qi, for all 2 ≤ i ≤ a. Thus P (n+ 1) holds.
(c) Define a function

f : N −→ X,

as follows. If n ∈ N there are two cases: if n = 0 send this to the
emptyset and if n > 0 send this to

A = {m1,m2, . . . ,mk },
where

n = 2m1 + 2m2 + · · ·+ 2mk ,

We already proved in (b) that this is a well-defined function.
Now define a function

g : X −→ N,
by sending the emptyset 0 and a non-empty set

A = {m1,m2, . . . ,mk },
to

n = 2m1 + 2m2 + · · ·+ 2mk .
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It is clear that f and g are inverses of each other, from their definitions.
Thus f is invertible, so that it is a bijection and so X is countable.
3. We first prove existence. We first do the case when a > 0 and b ≥ 0.
Let P (b) be the statement that we may find integers q and r such that

b = qa + r.

We prove that P (b) holds for all natural numbers by strong induction
on b.
If 0 ≤ b ≤ a − 1 then take q = 0 and r = b. Thus we know that P (b)
holds for any integer at least zero and no more than a− 1.
Now suppose that P (b) holds for all b ≤ c, where c ≥ a. Consider c+1.
Then

b = c + 1− a

≤ c.

By the inductive hypothesis we may find q and r such that

b = qa + r

and 0 ≤ r < a. In this case

c + 1 = b + a

= qa + r + a

= (q + 1)a + r.

Thus P (c + 1) holds.
Thus by mathematical induction, P (b) holds for all natural numbers.
This proves existence of q and r, when a > 0 and b ≥ 0.
Suppose that b < 0. Then −b > 0 and we may find q and r such that

−b = qa + r,

where 0 ≤ r < a.
There are two cases. If r = 0 then b = qa and so −b = (−q)a. Thus

b = (−q)a + 0.

If r > 0 then

b = −(qa + r)

= −qa− r

= −(q + 1)a + (a− r)

= pa + s,

where p = −(q + 1) and s = a− r. Note that s > 0 as r < a. On the
other hand, s < a as r > 0. Thus we have existence if a > 0.
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Suppose that a < 0. Then −a > 0 and so we may find q and r such
that

−b = q(−a) + r,

where 0 < r < −a = |a|. There are two cases. If r = 0 then b = (−q)a
and so

b = (−q)a + 0.

If r > 0 then

b = −(q(−a) + r)

= qa− r

= (q + 1)a− a− r

= pa + s,

where p = q − 1 and s = −a − r. As r < −a, s > 0. As r > 0,
s < −a = |a|. Thus we have proved existence.
Now suppose that we may find q1, r1, q2 and r2, such that

q1a + r1 = b = q2a + r2.

Rearranging, we have

(q1 − q2)a = (r1 − r2).

Looking at the LHS, we have an integer divisible by a.
Note that r1 − r2 < |a| as r1 < |a| and r2 > 0. Note that r1 − r2 > −a
as r1 > 0 and −r2 > −|a|. Thus

−|a| < r1 − r2 < |a|.
Note the only integer divisible by a greater than −|a| and less than
|a| is zero. Thus both sides of the equation are zero. As the RHS is
zero, we have r1 − r2 = 0 so that r1 = r2. As the LHS is zero we have
(q1 − q2)a = 0 and so q1 = q2 as a is non-zero.
This proves uniqueness.
4. The correct formula is:

|S| =

{
nm −

(
n
1

)
(n− 1)m +

(
n
2

)
(n− 2)m + · · ·+ (−1)n−1

(
n

n−1

)
if m ≥ n

0 if m < n.

If m < n then there are no surjective functions from A to B and so
|S| = 0.
Thus we may suppose that m ≥ n. We prove this formula by inclusion-
exclusion. The first term nm is simply the number of functions from A
to B. So we just need to count the number of functions that are not
surjective.
If a function is not surjective it misses one of the elements b1, b2, . . . , bn
of B. The number of functions which miss the element bi is (n− 1)m,
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the number of functions from A to a set with n−1 elements. There are
n possible choices of elements to miss. This is the second term, which
needs to be excluded.
The problem is that we excluded too many functions. The functions
which avoid two elements of B get excluded twice. If a function misses
both bi and bj it got excluded twice, once as a function which misses
bi and once as a function which misses bj. So we need to include these
functions once. There are (

n

2

)
choices of i and j and there are (n−2)m functions for each such choice.
This is the third term which gets included.
The general term is where we miss k values of B. There are(

n

k

)
choices of the elements of B we miss, there are (n− k)m functions for
each such choice and a factor of (−1)k−1 keeps track of whether we are
excluding or including this term.
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