PRACTICE PROBLEMS FOR THE FIRST MIDTERM

1. Give the definition of:
(i) a proposition.
(ii) a predicate.
(iii) contrapositive.
(iv) the absolute value.
(v) divides.
(vi) even.
(vii) odd.
(viii) a graph.
(ix) an edge.
(x) the degree of a vertex.
(xi) a walk.
(xii) a trail.
(xiii) an Euler trail.
2. Prove that

$$
|c|+|d| \geq|c+d|
$$

for all real numbers c and d.
3. Prove that an integer n is odd if and only if there is an integer k such that $n=2 k+1$.
4. Prove that $n(n+1)$ is even for every integer.
(a) Using (3).
(b) Using induction (prove the result for every positive integer first and then use the identity $-m(-m+1)=l(l+1)$, where $l=m-1$, to conclude for all integers).
5. Let x and y be positive real numbers. Show that the geometric mean is always at most the arithmetic mean

$$
\sqrt{x y} \leq \frac{x+y}{2}
$$

with equality if and only if $x=y$.
6. Prove that for all integers $n \geq 2$,

$$
1+4+18+96+600+\cdots+(n-1)!(n-1)+n!n=(n+1)!-1
$$

