PRACTICE PROBLEMS FOR THE SECOND MIDTERM

1. Give the definition of:
(i) the factorial of an integer.
(ii) the Fibonacci sequence.
(iii) the Golden ratio.
(iv) equality of two sets.
(v) a subset.
(vi) the emptyset.
(vii) union; intersection; difference; the symmetric difference.
(viii) the power set.
(ix) monotonic increasing sequence; monotonic decreasing sequence; monotonic sequence.
(x) upper bound of a set; lower bound of a set.
(xi) infimum of a set; supremum of a set.
(xii) function.
(xiii) composition of functions.
(xiv) identity function.
(xv) injective; surjective; bijective;
(xvi) inverse function.
2. Find the powerset of

$$
\{1,2,\{1\},\{1,2\}\} .
$$

3. Let A, B and C be three sets. If

$$
A \cap B \subset A \cap C \quad \text { and } \quad A \cup B \subset A \cup C
$$

then prove that $B \subset C$.
4. Let A, B and C be three sets. Prove that

$$
A \cup(B \cap C)=(A \cup B) \cap(A \cup C) .
$$

5. Prove or disprove:

$$
\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, \forall z \in \mathbb{R}, x+y=z
$$

6. Prove or disprove:
(a)

$$
\forall x \in \mathbb{R}, \exists y \in \mathbb{R},-x^{4}<y .
$$

(b)

$$
\exists y \in \mathbb{R}, \forall x \in \mathbb{R},-x^{4}<y
$$

(c)

$$
\exists x \in \mathbb{R}, \forall y \in \mathbb{R},-x^{3}<y
$$

(d)

$$
\exists y \in \mathbb{R}, \forall x \in \mathbb{R},-x^{3}<y
$$

7. Let $A \subset \mathbb{Z}$. Translate
" A has a maximum"
into a statement that uses only symbols and quantifiers. Negate the statement. Find an example of a set A where the statement is true and another set where the statement is false.
8. Let $f: A \longrightarrow B$ be a function. Prove that (a) f is injective if and only if either A is the emptyset or there is a function $g: B \longrightarrow A$ such that $g \circ f=\operatorname{id}_{A}: A \longrightarrow A$.
(b) f is surjective if and only if there is a function $g: B \longrightarrow A$ such that $f \circ g=\operatorname{id}_{B}: B \longrightarrow B$.
