PRACTICE PROBLEMS FOR THE SECOND MIDTERM

1. Give the definition of:
 (i) the factorial of an integer.
 (ii) the Fibonacci sequence.
 (iii) the Golden ratio.
 (iv) equality of two sets.
 (v) a subset.
 (vi) the emptyset.
 (vii) union; intersection; difference; the symmetric difference.
 (viii) the power set.
 (ix) monotonic increasing sequence; monotonic decreasing sequence; monotonic sequence.
 (x) upper bound of a set; lower bound of a set.
 (xi) infimum of a set; supremum of a set.
 (xii) function.
 (xiii) composition of functions.
 (xiv) identity function.
 (xv) injective; surjective; bijective;
 (xvi) inverse function.
2. Find the powerset of
 \{1, 2, \{1\}, \{1, 2\}\}.
3. Let \(A\), \(B\) and \(C\) be three sets. If
 \(A \cap B \subseteq A \cap C\) and \(A \cup B \subseteq A \cup C\)
 then prove that \(B \subseteq C\).
4. Let \(A\), \(B\) and \(C\) be three sets. Prove that
 \(A \cup (B \cap C) = (A \cup B) \cap (A \cup C)\).
5. Prove or disprove:
 \(\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, \forall z \in \mathbb{R}, x + y = z\).
6. Prove or disprove:
 (a) \(\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, -x^4 < y\).
 (b) \(\exists y \in \mathbb{R}, \forall x \in \mathbb{R}, -x^4 < y\).
(c) \[\exists x \in \mathbb{R}, \forall y \in \mathbb{R}, -x^3 < y. \]

(d) \[\exists y \in \mathbb{R}, \forall x \in \mathbb{R}, -x^3 < y. \]

7. Let \(A \subset \mathbb{Z} \). Translate

“A has a maximum”

into a statement that uses only symbols and quantifiers. Negate the statement. Find an example of a set \(A \) where the statement is true and another set where the statement is false.

8. Let \(f: A \to B \) be a function. Prove that

(a) \(f \) is injective if and only if either \(A \) is the emptyset or there is a function \(g: B \to A \) such that \(g \circ f = \text{id}_A: A \to A \).

(b) \(f \) is surjective if and only if there is a function \(g: B \to A \) such that \(f \circ g = \text{id}_B: B \to B \).