
FINAL EXAM

MATH 100B, UCSD, WINTER 17

You have three hours.

There are 9 problems, and the total number of

points is 140. Show all your work. Please make

your work as clear and easy to follow as possible.

Name:

Signature:

Section instructor:

Section Time:

Problem Points Score

1 25

2 15

3 20

4 15

5 15

6 20

7 10

8 10

9 10

10 25

11 10

12 10

13 10

14 10

Total 140
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1. (25pts) (i) Give the definition of an irreducible element of an integral

domain.

We say that a ∈ R is irreducible if it is non-zero, not invertible, and
whenever a = bc then one of b or c is invertible.

(ii) Give the definition of a prime ideal.

An ideal I ⊂ R is prime if I 6= R and whenever ab ∈ I then either
a ∈ I or b ∈ I.

(iii) Give the definition of a maximal ideal.

An ideal I ⊂ R is maximal if I 6= R and whenever I ⊂ J ⊂ R is an
ideal then either J = I or J = R.
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(iv) Give the definition of the content of a polynomial.

If f(x) ∈ R[x] and R is a UFD then the content of f is the gcd of the
coefficients of f .

(v) Give the definition of a unique factorisation domain.

A ring R is a UFD, if every non-zero element of R, which is not a
unit, has a factorisation into primes, which is unique up to order and
associates.
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2. (15pts) (i) Let R be a commutative ring and let a be an element of

R. Prove that the set

{ ra | r ∈ R }

is an ideal of R.

Call this set I. I is non-empty as 0 = 0 · a ∈ I. If x and y are in I,
then x = ra and y = sa some r and s. In this case x+ y = ra+ sa =
(r + s)a ∈ I. Similarly if x ∈ I and s ∈ R, then x = ra, some r
and sx = s(ra) = (rs)a ∈ I. Thus I is non-empty and closed under
addition and scalar multiplication. It follows that I is an ideal.

(ii) Show that a commutative ring R is a field if and only if the only

ideals in R are the zero-ideal {0} and the whole ring R.

Suppose that R is a field and let I be a non-zero ideal of R. Pick a ∈ I,
not equal to zero. As R is a field, a is a unit. Let b be the inverse of a.
Then 1 = ba ∈ I. Now pick r ∈ R. Then r = r · 1 ∈ I. Thus I = R.
Now suppose that R has no non-trivial ideals. Pick a non-zero element
a ∈ R. It suffices to find an inverse of a. Let I be the ideal generated
by a. Then I has the form above. a = 1 · a ∈ I. Thus I is not the
zero ideal. By assumption I = R and so 1 ∈ I. But then 1 = ba, some
b ∈ R and b is the inverse of a. Thus R is field.

(iii) Let φ : F −→ R be a ring homomorphism, where F is a field. Prove

that φ is injective.

Let K be the kernel. As φ(1) = 1, 1 /∈ K. As K is an ideal, and F is
field, it follows that K is the zero ideal. But then φ is injective.
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3. (20pts) (i) Let R be a commutative ring and let I be an ideal. Show

that R/I is an integral domain if and only if I is a prime ideal.

Let a and b be two elements of R and suppose that ab ∈ I, whilst a /∈ I.
Let x = a+ I and y = b+ I. Then x 6= I = 0.

xy = (a+ I)(b+ I)

= ab+ I

= I = 0.

As R/I is an integral domain and x 6= 0, it follows that b+ I = y = 0.
But then b ∈ I. Hence I is prime.
Now suppose that I is prime. Let x and y be two elements of R/I,
such that xy = 0, whilst x 6= 0. Then x = a + I and y = b + I, for
some a and b in R. As xy = I, it follows that ab ∈ I. As x 6= I, a /∈ I.
As I is a prime ideal, it follows that b ∈ I. But then y = b + I = 0.
Thus R/I is an integral domain.

(ii) Let R be an integral domain and let I be an ideal. Show that R/I
is a field if and only if I is a maximal ideal.

Note that there a surjective ring homomorphism

φ : R −→ R/I

which sends an element r ∈ R to the left coset r + I. Furthermore
there is a correspondence between ideals J of R/I and ideals K of R
which contain I. Indeed, given an ideal J of R/I, let K be the inverse
image of J . As 0 ∈ J , I ⊂ K. Given I ⊂ K, let J = φ(I). It is easy
to check that the given maps are inverses of each other. The zero ideal
corresponds to I and R/I corresponds to R. Thus I is maximal if and
only if R/I only contains the zero ideal and R/I.
On the other hand R/I is a field if and only if the only ideals in R/I
are the zero ideal and the whole of R/I.
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4. (15pts) Let R be a principal ideal domain and let a and b be two

non-zero elements of R. Show that the gcd d of a and b exists and prove

that there are elements r and s of R such that

d = ra+ sb.

Let I = 〈a, b〉. As R is a PID, I = 〈d〉, for some d ∈ R. As d ∈ I =
〈a, b〉, there are r and s ∈ R, such that d = ra+sb. It remains to prove
that d is the gcd.
As a ∈ I = 〈d〉, d divides a. Similarly d divides b. Thus d is a common
divisor. Now suppose that d′ is also a common divisor of a and b. Then
a, b ∈ 〈d′〉. Thus d ∈ I = 〈a, b〉 ⊂ 〈d′〉. Thus d ∈ 〈d′〉 and d′ divides d.
Thus d is a greatest common divisor.
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5. (15pts) Find all irreducible polynomials of degree at most four over

the field F2.

Any linear polynomial is irreducible. There are two such x and x+ 1.
A general quadratic has the form f(x) = x2 + ax + b. b 6= 0, else x
divides f(x). Thus b = 1. If a = 0, then f(x) = x2 + 1, which has 1 as
a zero. Thus f(x) = x2 + x+ 1 is the only irreducible quadratic.
Now suppose that we have an irreducible cubic f(x) = x3+ax+bx+1.
This is irreducible if and only if f(1) 6= 0, which is the same as to say
that there are an odd number of terms. Thus the irreducible cubics are
f(x) = x3 + x2 + 1 and x3 + x+ 1.
Finally suppose that f(x) is a quartic polynomial. The general irre-
ducible is of the form x4 + ax3 + bx2 + cx + 1. f(1) 6= 0 is the same
as to say that either two of a, b and c are equal to zero or they are all
equal to one. Suppose that

f(x) = g(x)h(x).

If f(x) does not have a root, then both g and h must have degree two.
If either g or h were reducible, then again f would have a linear factor,
and therefore a root. Thus the only possibilty is that both g and h are
the unique irreducible quadratic polynomials.
In this case

f(x) = (x2 + x+ 1)2 = x4 + x2 + 1.

Thus x4 + x3 + x2 + x + 1, x4 + x3 + 1, and x4 + x + 1 are the three
irreducible quartics.

6



6. (20pts) (i) Let R be a UFD and let g(x) and h(x) ∈ R[x] be two

polynomials whose content is one. Show that the content of the product

f(x) = g(x)h(x) ∈ R[x] is also equal to one.

Suppose not. As R is a UFD, it follows that there is a prime p that
divides the content of f(x). We may write

g(x) = anx
n+an−1x

n−1+· · ·+a0 and h(x) = bnx
n+bn−1x

n−1+· · ·+b0.

As the content of g is one, at least one coefficient of g is not divisible
by p. Let i be the first such, so that p divides ak, for k < i whilst p
does not divide ai. Similarly pick j so that p divides bk, for k < j,
whilst p does not d divide bj.
Consider the coefficient of xi+j in f . This is equal to

a0bi+j + a1bi+j−1 + · · ·+ ai−1bj+1 + aibj + ai+1bj+1 + . . . ai+jb0.

Note that p divides every term of this sum, except the middle one aibj.
Thus p does not divide the coefficient of xi+j. But this contradicts the
definition of the content.
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(ii) Prove that if R is a UFD then so is the polynomial ring R[x1, x2, . . . , xn].

By Gauss’s Lemma, if S is a UFD, then so is S[x]. We proceed by
induction on n. The case n = 1 is Gauss’ Lemma. So suppose that the
result is true for n− 1. Set

S = R[x1, x2, . . . , xn−1].

Then S is a UFD, by induction on n. By Gauss’ Lemma S[xn] is a
UFD. But it is easy to see that

R[x1, x2, . . . , xn] ≃ S[xn],

and the result follows by induction.
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7. (10pts) State Eisenstein’s criteria. Prove that the polynomial f(x)

5x13−9x12+15x11+18x10−24x9+6x8+9x7−3x6−18x5+6x4+9x3−3x2+12x+3,

is an irreducible element of Q[x].

Let f(x) ∈ Z[x] be a polynomial. Suppose that there is a prime p
which does not divide the leading coefficient of f , whilst it does divide
the other coefficients, and such that p2 does not divide the constant
coefficient. Then f is irreducible over Q.
Apply Eisenstein with p = 3.
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8. (10pts) Show that the Gaussian integers Z[i] is a Euclidean domain.

Define a function
d : R− {0} −→ N ∪ {0},

by sending a+ bi to its norm, which is by definition a2 + b2.
If z is a Gaussian integer x+ iy, then

|z|2 = zz̄ = x2 + y2 = d(z).

On the other hand, suppose we use polar coordinates, rather than
Cartesian coordinates, to represent a complex number,

z = reiθ.

Then r = |z|.
For any pair z1 and z2 of complex numbers, we have

|z1z2| = |z1||z2|.

Indeed this is clear if we use polar coordinates. Now suppose that both
z1 and z2 are Gaussian integers. If we square both sides of the equation
above, we get

d(z1z2) = d(z1)d(z2).

As the absolute value of a Gaussian integer is always at least one, (1)
follows easily.
We turn to (2). Let γ = β/α. Pick a Gaussian integer q such that
the square of the distance between γ and q is at most 1/2. Then the
distance between β = γα and qα is at most r2/2. Thus we may write

β = qα + r,

(different r of course) such that d(r) < d(α).
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9. (10pts) Let p be a prime. Prove that

f(x) = xp−1 + xp−2 + · · ·+ x+ 1,

is irreducible over Q.

By Gauss’ Lemma, it suffices to prove that f(x) is irreducible over Z.
First note that

f(x) =
xp − 1

x− 1
,

as can be easily checked. Consider the change of variable

y = x+ 1.

As this induces an automorphism

Z[x] −→ Z[x]

by sending x to x+1, this will not alter whether or not f is irreducible.
In this case

f(y) =
(y + 1)p − 1

y

= yp−1 +

(

p

1

)

yp−2 +

(

p

2

)

yp−3 + · · ·+

(

p

p− 1

)

= yp−1 + pyp−2 + · · ·+ p.

Note that
(

p

i

)

is divisible by p, for all 1 ≤ i < p, and the constant
coefficient is not divisible buy p2, so that we can apply Eisenstein to
f(y), using the prime p.
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Bonus Challenge Problems

10. (25pts) (i) Give the definition of a module.

A module M is an abelian group, together with a commutative ring R,
with a scalar multiplication

R×M −→ M

such that for all m and n ∈ M and r, s ∈ R,

(1) 1 ·m = m.
(2) (rs)m = r(sm).
(3) (r + s)m = rm+ sm.
(4) r(m+ n) = rm+ rn.

(ii) Give the definition of a submodule.

If M is an R-module then a subset N is called a submodule if it is a
module with the inherited operations of addition and scalar multipli-
cation.

(iii) Give the definition of a Noetherian module.

A module is Noetherian if every submodule is finitely generated.

12



(iv) Give the definition of a bilinear map.

If M , N and P are three R-modules over a ring R a function

f : M ×N −→ P

is called bilinear if it is linear in either factor, so that

f(m1 +m2, n) = f(m1, n) + f(m2, n) f(rm, n) = rf(m,n)

f(m,n1 + n2) = f(m,n1) + f(m,n2) f(m, rn) = rf(m,n).

(v) Give the definition of the tensor product of two modules.

Let M and N be two R-modules. The tensor product of M and N
is an R-module M ⊗

R
N , together with a bilinear map u : M × N −→

M ⊗
R
N such that u is universal in the following sense Given any other

bilinear map f : M ×N −→ P there is a unique induced R-linear map
φ : M ⊗

R
N −→ P such that the following diagram commutes

M ×N
f
✲ P

M ⊗
R
N

u

❄

φ
✲
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10. (10pts) Prove that a module over a Noetherian ring is Noetherian

if and only if it is finitely generated.

I claim that if
0 −→ M −→ N −→ P −→ 0

is a short exact sequence of modules then N is Noetherian if and only if
M and P are Noetherian. One way around is clear. If N is Noetherian,
then M is automatically Noetherian as it is a submodulde of N . If P ′

is submodule of P , then N ′ the inverse image of P ′ is a submodule of
N . Then a finite set of generators of N ′ pushes forward to generators
of P ′.
Now suppose that M and P are Noetherian. Suppose that we have an
ascending chain of submodules of N . By taking their images in P and
their inverse images in M , we get two ascending chains of submodules,
one inside M and the other inside P . By assumption both must sta-
bilise. But then it is easy to see that the original sequence in N must
also stabilise. Hence the claim.
By the claim, the short exact sequence

0 −→ Rn−1 −→ Rn −→ R −→ 0,

and induction on n, it follows that Rn is Noetherian. Picking generators
for M , it follows that M is a quotient of Rn, a Noetherian module. But
then M is Noetherian.
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11. (10pts) Prove Hilbert’s Basis Theorem.

Let R be a Noetherian ring and let I ⊂ R[x] be an ideal. It suffices
to prove that I is finitely generated. Let J ⊂ R be the set of leading
coefficients of elements of I. It is easy to check that J is an ideal of
R. As R is Noetherian, J is finitely generated. Suppose that J =
〈a1, a2, . . . , ak〉. Pick fi ∈ I with leading coefficient ai and let m be the
maximum of the degrees di of fi.
Pick f ∈ I. I claim that there is an element g ∈ 〈f1, f2, . . . , fk〉 such
that f − g has degree at most m. The proof proceeds by induction
on the degree d of f . If this is less than m there is nothing to prove.
Otherwise it suffices, by induction on the degree, to decrease the degree
by one. Suppose the leading coefficient of f is a. As a ∈ J , there are
r1, r2, . . . , rk ∈ R such that

a =
∑

riai.

But the coefficient of xn in

f(x)− g(x) = f(x)−
∑

rix
d−difi(x)

is zero by construction.
Let h(x) = f(x)− g(x) ∈ I. Then h has degree less than m. Let M be
the R-module consisting of all polynomials of degree less than m. Then
h ∈ I ∩M and M is generated by 1, x, x2, . . . , xm−1. In particular M
is finitely generated. As R is Noetherian, M is Noetherian. As I ∩M
is a submodule of M , it follows that I ∩M is finitely generated. Pick
generators h1, h2, . . . , hl. Then h is a linear combination of h1, h2, . . . , hl

and so f is a linear combination of f1, f2, . . . , fk and h1, h2, . . . , hl. It
follows that these are generators of I.
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12. (10pts) If M is an R-module, then prove that there is a natural

isomorphism

R⊗
R
M ≃ M.

We are going to show that M satisfies the properties of the tensor
product. First we need to exhibit a bilinear map,

u : R×M −→ M

The definition of u is almost forced, send (r,m) to rm. This is clearly
a bilinear map. Now suppose we are given a bilinear map

f : R×M −→ N.

Define
φ : M −→ N

by sending m to f(1,m). We check that the diagram,

R×M
f
✲ N

M

u

❄

φ

....
....
....
....
....✲

commutes. Suppose that (r,m) ∈ R×M . Then

φ ◦ u(r,m) = φ(rm)

= f(1, rm)

= rf(1,m)

= f(r,m),

where we applied bilinearity of f twice. Thus the diagram commutes.
Finally we check that φ is R-linear. Suppose that m1, m2 ∈ M . Then

φ(m1 +m2) = f(1,m1 +m2)

= f(1,m1) + f(1,m2)

= φ(m1) + φ(m2).

Now suppose that r ∈ R and m ∈ M . Then

φ(rm) = f(1, rm)

= rf(1,m)

= rφ(m).

Thus φ is R-linear. Thus M satisfies all the properties of a tensor
product and the result is clear.
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13. (10pts) Identify
Q/Z⊗

Z
Q/Z.

0.
Consider

a

b
⊗

c

d
,

where a, b, c and d belong to Z.
We compute the product

d(
a

bd
⊗

c

d
),

in two different ways. By linearity on the left we get
a

b
⊗

c

d
.

By linearity on the right we get
a

bd
⊗ c =

a

bd
⊗ 0 = 0.

Thus
a

b
⊗

c

d
= 0.

As every element of the tensor product is a finite linear combination of
these elements, it follows that the tensor product is zero.
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