HOMEWORK 4, DUE WEDNESDAY FEBRUARY 8TH

1. Let R be a ring and let I be an ideal of R, not equal to the whole of R. Suppose that every element not in I is a unit. Prove that I is the unique maximal ideal in R.
2. Let $\phi: R \longrightarrow S$ be a ring homomorphism and suppose that J is a prime ideal of S.
(i) Prove that $I=\phi^{-1}(J)$ is a prime ideal of R.
(ii) Give an example of an ideal J that is maximal such that I is not maximal.
3. Prove that every prime element of an integral domain is irreducible.
4. (a) Show that the elements 2,3 and $1 \pm \sqrt{-5}$ are irreducible elements of $\mathbb{Z}[\sqrt{-} 5]$.
(b) Show that every element of R can be factored into irreducibles.
(c) Show that R is not a UFD.

Let R be a commutative ring. Our aim is to prove a very strong form of the Chinese Remainder Theorem. First we need some definitions. Let I and J be two ideals. The sum of I and J, denoted $I+J$, is the set consisting of all sums $i+j$, where $i \in I$ and $j \in J$. We say that I and J are coprime if $I+J=R$.
5. (a) Show that $I+J$ is an ideal of R.
(b) Show that I and J are coprime if and only if there is an $i \in I$ and a $j \in J$ such that $i+j=1$.
(c) Show that if I and J are coprime then $I J=I \cap J$.

Suppose that $I_{1}, I_{2}, \ldots, I_{k}$ are ideals of R. We say these ideals are pairwise coprime, if for all $i \neq j, I_{i}$ and I_{j} are coprime.
6. If $I_{1}, I_{2}, \ldots, I_{k}$ are pairwise coprime, show that the product I of the ideals $I_{1}, I_{2}, \ldots, I_{k}$ is equal to the intersection, that is

$$
\prod_{i=1}^{k} I_{i}=\bigcap_{i=1}^{k} I_{i}
$$

(Hint. Proceed by induction on k).
Let R_{i} denote the quotient R / I_{i}. Define a map,

$$
\phi: R \longrightarrow \bigoplus_{i=1}^{k} R_{i}
$$

by $\phi(a)=\left(a+I_{1}, a+I_{2}, \ldots, a+I_{k}\right)$
7. (a) Show that ϕ is a ring homomorphism.
(b) See below.
(c) Show that ϕ is injective if and only if I, the intersection of the ideals $I_{1}, I_{2}, \ldots, I_{k}$, is equal to the zero ideal.
8. Deduce the Chinese Remainder Theorem, which states that if $I_{1}, I_{2}, \ldots, I_{k}$ are pairwise coprime and the product I is the zero ideal, then R is isomorphic to $\oplus_{i=1}^{k} R_{i}$. Show how to deduce the other versions of the Chinese Remainder Theorem, which are stated as exercises in the book. Challenge Problems 7 (b) Show that ϕ is surjective if and only if the ideals $I_{1}, I_{2}, \ldots, I_{k}$ are pairwise coprime.
9. Let S be a commutative monoid, that is, a set together with a binary operation that is associative, commutative, and for which there is an identity, but not necessarily inverses. Treating this operation like multiplication in a ring, define what it means for S to have unique factorisation.
10. Let $v_{1}, v_{2}, \ldots, v_{n}$ be a sequence of elements of \mathbb{Z}^{2}. Let S be the semigroup that consists of all linear combinations of $v_{1}, v_{2}, \ldots, v_{n}$, with positive integral coefficients. Let the binary rule be ordinary addition. Determine which monoids have unique factorisation.
11. Show that there is a ring R, such that every element of the ring is a product of irreducibles, whilst at the same time the factorisation algorithm can fail.

