HOMEWORK 5, DUE WEDNESDAY FEBRUARY 15TH

1. Let R be an integral domain. Let a and b be two elements of R. Show that if d and d^{\prime} are both a gcd for the pair a and b, then d and d^{\prime} are associates.
2. Let R be a UFD.
(a) Prove that for every pair of elements a and b of R, we may find an element $m=[a, b]$ that is a least common multiple, that is
(1) $a \mid m$ and $b \mid m$,
(2) and if $a \mid m^{\prime}$ and $b \mid m^{\prime}$ then $m \mid m^{\prime}$.

Show that any two lcm's are associates.
(b) Show that if (a, b) denotes the gcd then $(a, b)[a, b]$ is an associate of $a b$.
3. Chapter 4, §5: 3(a), (d).
4. Find the greatest common divisor of $135-14 i$ and $155+34 i$ in the ring of Gaussian integers $\mathbb{Z}[i]$.

