
14. Finitely Generated Modules over a PID

We want to give a complete classification of finitely generated mod-
ules over a PID. Recall that a finitely generated module is a quotient
of Rn, a free module. Let K be the kernel. Then M is isomorphic to
Rn/K, by the Isomorphism Theorem.

Now K is a submodule of a Noetherian module; hence K is finitely
generated. Pick a finite set of generators of K (it turns out that K
is also isomorphic to a free module. Thus K is isomorphic to Rm, for
some m, and in fact m ≤ n).

As there is a map Rm −→ K, by composition we get an R-linear
map

φ : Rm −→ Rn.

Since K is determined by φ, M is determined by φ. The crucial piece
of information is to determine φ.

As this map is R-linear, just as in the case of vector spaces, ev-
erything is determined by the action of φ on the standard generators
f1, f2, . . . , fm. Suppose that we expand φ(fi) as a linear combination
of the standard generators e1, e2, . . . , en of Rn.

φ(fi) =
∑
j

aijej.

In this case we get a matrix

A = (aij) ∈Mn,m(R).

The point is to choose different bases of Rm and Rn so that the
representation of φ by A is in a better form. Note the following:

Lemma 14.1. Let r1, r2, . . . , rn be (respectively free) generators of M .
Then so are s1, s2, . . . , sn, where

(1) we multiply one of the ri by an invertible element,
(2) we switch the position of ri and rj,
(3) we replace ri by ri + arj, where a is any scalar.

Proof. Easy. �

At the level of matrices, (14.1) informs us that we are free to perform
any one of the elementary operations on matrices, namely multiplying
a row (respectively column) by an invertible element, switching two
rows (respectively columns) and taking a row and adding an arbitrary
multiple of another row (respectively column).

Proposition 14.2. Let A be a matrix with entries in a Euclidean do-
main R.
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Then, after a sequence of elementary row operations and column
operations, we may put A into the following form. The only non-zero
entries are on the diagonal and each non-zero entry divides the next
one in the list.

Proof. The key point is to reduce to the case where one of the entries
of A is the gcd of the entries of A.

To this end, since the gcd of a sequence can be calculated by re-
cursively taking the gcd of a pair, and by elementary row and column
operations we can always make any two entries adjacent, we reduce to
the case that A is a 2× 1 matrix,(

a
b

)
.

Since we are working over a Euclidean domain (and not just a PID)
we can calculate the gcd by using Euclid’s algorithm. At each stage we
may find q and r such that

b = qa+ r or a = qb+ r.

By symmetry we may assume we have the former case. Now either
r = 0 in which case either a is the gcd, and we are done, or by Euclid’s
algorithm it suffices to find the gcd of a and r. But if we take the first
row of a and multiply by q and subtract this from the second row then
we get the matrix (

a
r

)
.

Therefore, after finitely many elementary row and column operations
we may assume that one entry of A is the gcd.

Now by permuting the rows and columns, we may assume that d is
at the top left hand corner. As d is the gcd, it divides every entry of
A. By row and column reduction we reduce to the case that the only
non-zero entry in the first column and row is the entry d at the top left
hand corner. Let B be the matrix obtained by striking out the first
row and column. Then every element of B is divisible by d and we are
done by induction on m and n. �

Remark 14.3. One can actually reduce any matrix over a PID into
the same form. In this case one needs to pre- and post-multiply by
invertible matrices with entries in R.

As before we are reduced to the case

A =

(
a
b

)
.
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In the general case, as R is a PID, note that we may find x and y
such that

d = xa+ yb.

Note that the gcd of x and y must be 1. Therefore we may find u and
v such that

1 = ux+ vy.

Let

B =

(
x y
−v u

)
.

Note that the determinant of B is

xu+ yv = 1.

Thus B is invertible, with inverse(
u −y
v x

)
.

On the other hand,

BA =

(
d

−va+ ub

)
.

Corollary 14.4. Let M be a module over a PID R.
Then M is isomorphic to F ⊕ T , where F is a free module and T is

isomorphic to, either

(1)

R/〈d1〉 ⊕R/〈d2〉 ⊕ · · · ⊕R/〈dn〉,
where di divides di+1, or

(2)

R/〈pm1
1 〉 ⊕R/〈pm2

2 〉 ⊕ · · · ⊕R/〈pmn
n 〉,

where pi is a prime.

Proof. By the Chinese Remainder Theorem it suffices to prove the first
classification result. By assumption M is isomorphic to a quotient of
Rn by an image of Rm. By (14.2) we may assume the corresponding
matrix has the given simple form. Now note that the rows that con-
tain only zeroes, correspond to the free part, and there is an obvious
corrrespondence between the non-zero rows and the direct summands
of the torsion part. �

One special case deserves attention:

Corollary 14.5. Let G be a finitely generated abelian group.
Then G is isomorphic to Zr × T , where T is isomorphic to
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(1)
Zd1 × Zd2 × · · · × Zdn ,

where d1, d2, . . . , dn are positive integers and di divides di+1, or
(2)

Zp
m1
1
× Zp

m2
2
× · · · × Zpmn

n
.

where p1, p2, . . . , pn are primes.

Really the best way to illustrate the proof of these results, which are
not hard, is to illustrate the methods by an example. Suppose we are
given 3 8 7 9

2 4 6 6
1 2 2 1


The gcd is 1. Thus we first switch the third and first rows.1 2 2 1

2 4 6 6
3 8 7 9

 .

As we now have a 1 in the first row, we can now eliminate 2 and 3
from the first column, a la Gaussian elimination, to get1 2 2 1

0 0 2 4
0 2 1 6

 .

Now eliminate the entries in the first row.1 0 0 0
0 0 2 4
0 2 1 6


Now we switch the second and third columns,1 0 0 0

0 2 0 4
0 1 2 6


and then the second and third rows,1 0 0 0

0 1 2 6
0 2 0 4


Now eliminate as before, 1 0 0 0

0 1 0 0
0 0 −4 −8
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Now multiply the third row by −1 and eliminate the 8, to get1 0 0 0
0 1 0 0
0 0 4 0


This corrresponds to a Z-linear map

φ : Z4 −→ Z3.

It follows then that we have (Z ⊕ Z ⊕ Z)/(Z ⊕ Z ⊕ 4Z) ' Z4. The
free part is zero and the torsion part is Z4.

Suppose instead we have the matrix:
1 0 0 0
0 3 0 0
0 0 30 0
0 0 0 0
0 0 0 0

 .

This represents a Z-linear map

Z4 −→ Z5,

in the standard way. It follows then that we have

(Z⊕Z⊕Z⊕Z⊕Z)/(Z⊕3Z⊕30Z) ' Z⊕Z⊕Z3⊕Z30 ' Z×Z×Z3×Z30.

The free part is Z× Z and the torsion part is Z3 × Z30 ' Z2 × Z3 ×
Z3 × Z5.
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