
4. Field of fractions

The rational numbers Q are constructed from the integers Z by
adding inverses. In fact a rational number is of the form a/b, where a
and b are integers. Note that a rational number does not have a unique
representative in this way. In fact

a

b
=
ka

kb
.

So really a rational number is an equivalence class of pairs [a, b], where
two such pairs [a, b] and [c, d] are equivalent if and only if ad = bc.

Now given an arbitrary integral domain R, we can perform the same
operation.

Definition-Lemma 4.1. Let R be any integral domain. Let N be the
subset of R×R such that the second coordinate is non-zero.

Define an equivalence relation ∼ on N as follows.

(a, b) ∼ (c, d) if and only if ad = bc.

Proof. We have to check three things, reflexivity, symmetry and tran-
sitivity.

Suppose that (a, b) ∈ N . Then

a · b = a · b

so that (a, b) ∼ (a, b). Hence ∼ is reflexive.
Now suppose that (a, b), (c, d) ∈ N and that (a, b) ∼ (c, d). Then

ad = bc. But then cb = da, as R is commutative and so (c, d) ∼ (a, b).
Hence ∼ is symmetric.

Finally suppose that (a, b), (c, d) and (e, f) ∈ R and that (a, b) ∼
(c, d), (c, d) ∼ (e, f). Then ad = bc and cf = de. Then

(af)d = (ad)f

= (bc)f

= b(cf)

= (be)d.

As (c, d) ∈ N , we have d 6= 0. Cancelling d, we get af = be. Thus
(a, b) ∼ (e, f). Hence ∼ is transitive. �

Definition-Lemma 4.2. The field of fractions of R, denoted F
is the set of equivalence classes, under the equivalence relation defined
above. Given two elements [a, b] and [c, d] define

[a, b] + [c, d] = [ad+ bc, bd] and [a, b] · [c, d] = [ac, bd].
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With these rules of addition and multiplication F becomes a field. More-
over there is a natural injective ring homomorphism

φ : R −→ F,

so that we may identify R as a subring of F . In fact φ is universal
amongs all such injective ring homomorphisms whose targets are fields.

Proof. First we have to check that this rule of addition and multiplica-
tion is well-defined. Suppose that [a, b] = [a′, b′] and [c, d] = [c′, d′]. By
commutativity and an obvious induction (involving at most two steps,
the only real advantage of which is to simplify the notation) we may
assume c = c′ and d = d′. As [a, b] = [a′, b′] we have ab′ = a′b. Thus

(a′d+ b′c)(bd) = (a′bd+ bb′c)d

= (ab′d+ bb′c)d

= (ad+ bc)(b′d).

Thus [a′d+ b′c, b′d] = [ad+ bc, bd]. Thus the given rule of addition is
well-defined. It can be shown similarly (and in fact more easily) that
the given rule for multiplication is also well-defined.

We leave it is an exercise for the reader to check that F is a ring
under addition and that multiplication is associative. For example,
note that [0, 1] plays the role of 0 and [1, 1] plays the role of 1.

Given an element [a, b] in F , where a 6= 0, then it is easy to see that
[b, a] is the inverse of [a, b]. It follows that F is a field.

Define a map
φ : R −→ F,

by the rule
φ(a) = [a, 1].

Again it is easy to check that φ is indeed an injective ring homomor-
phism and that it satisfies the given universal property. �

Example 4.3. If we take R = Z, then of course the field of fractions
is isomorphic to Q. If R is the ring of Gaussian integers, then F is a
copy of a+ bi where now a and b are elements of Q.

If R = K[x], where K is a field, then the field of fractions is denoted
K(x). It consists of all rational functions, that is, all quotients

f(x)

g(x)
,

where f and g are polynomials with coefficients in R.
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