
5. Prime and Maximal Ideals

Let R be a ring and let I be an ideal of R, where I 6= R. Consider
the quotient ring R/I. Two very natural questions arise:

(1) When is R/I a domain?
(2) When is R/I a field?

Definition-Lemma 5.1. Let R be a ring and let I be an ideal of R.
We say that I is prime if I 6= R and whenever ab ∈ I then either
a ∈ I or b ∈ I.
R/I is a domain if and only if I is prime.

Proof. Suppose that I is prime. Let x and y be two elements of R/I.
Then there are elements a and b of R such that x = a+I and y = b+I.
Suppose that xy = 0, but that x 6= 0, that is, suppose that a /∈ I.

xy = (a+ I)(b+ I)

= ab+ I

= 0.

But then ab ∈ I and as I is prime, b ∈ I. But then y = b+ I = I = 0.
Thus R/I is a domain.

Now suppose that R/I is a domain. Let a and b be two elements of
R such that ab ∈ I and suppose that a /∈ I. Let x = a + I, y = b + I.
Then xy = ab + I = 0. As x 6= 0, and R/I is a domain, y = 0. But
then b ∈ I and so I is prime. �

Example 5.2. Let R = Z. Then every ideal in R has the form 〈n〉 =
nZ. It is not hard to see that I is prime if and only if n is prime.

Definition 5.3. Let R be an integral domain and let a be a non-zero
element of R. We say that a is prime, if 〈a〉 is a prime ideal.

Note that the condition that 〈a〉 is not the whole of R is equivalent
to requiring that a is not invertible.

Definition-Lemma 5.4. Let R be a ring. Then there is a unique ring
homomorphism φ : Z −→ R.

We say that the characteristic of R is n if the order of the image
of φ is finite, equal to n; otherwise the characteristic is 0.

Let R be a domain of finite characteristic. Then the characteristic
is prime.

Proof. Let φ : Z −→ R be a ring homomorphism. Then φ(1) = 1. Note
that Z is a cyclic group under addition. Thus there is a unique map that
sends 1 to 1 and is a group homomorphism. Thus φ is certainly unique
and it is not hard to check that in fact φ is a ring homomorphism.
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Now suppose that R is a domain. Then the image of φ is a domain.
In particular the kernel I of φ is a prime ideal. Suppose that I = 〈p〉.
Then the image of φ is isomorphic to R/I, that is the integers modulo
p, and so the characteristic is equal to p. �

Another, obviously equivalent, way to define the characteristic n is
to take the minimum non-zero positive integer such that n1 = 0.

Example 5.5. The characteristic of Q is zero. Indeed the natural
map Z −→ Q is an inclusion. Thus every field that contains Q has
characteristic zero. On the other hand Zp is a field of characteristic p.

Definition 5.6. Let I be an ideal. We say that I is maximal if for
every ideal J , such that I ⊂ J , either J = I or J = R.

Proposition 5.7. Let R be a commutative ring.
Then R is a field if and only if the only ideals are {0} and R.

Proof. We have already seen that if R is a field, then R contains no
non-trivial ideals.

Now suppose that R contains no non-trivial ideals and let a ∈ R.
Suppose that a 6= 0 and let I = 〈a〉. Then I 6= {0}. Thus I = R. But
then 1 ∈ I and so 1 = ba. Thus a is a invertible and as a was arbitrary,
R is a field. �

Theorem 5.8. Let R be a commutative ring.
Then R/M is a field if and only if M is a maximal ideal.

Proof. Note that there is an obvious correspondence between the ideals
of R/M and ideals of R that contain M . The result follows immediately
from (5.7). �

Corollary 5.9. Let R be a commutative ring.
Then every maximal ideal is prime.

Proof. Clear as every field is an integral domain. �

Example 5.10. Let R = Z and let p be a prime. Then I = 〈p〉 is not
only prime, but it is in fact maximal. Indeed the quotient is Zp.

Example 5.11. Let X be a set and let R be a commutative ring and
let F be the set of all functions from X to R. Let x ∈ X be a point of
X and let I be the ideal of all functions vanishing at x. Then F/I is
isomorphic to R.

Thus I is prime if and only if R is an integral domain and I is
maximal if and only if R is a field. For example, take X = [0, 1] and
R = R. In this case it turns out that every maximal ideal is of the
same form (that is, the set of functions vanishing at a point).
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Example 5.12. Let R be the ring of Gaussian integers and let I be
the ideal of all Gaussian integers a+ bi where both a and b are divisible
by 3.

I claim that I is maximal.
Indeed it is not hard to see that R/I is finite. As every finite integral

domain is a field, in fact it suffices to prove that I is prime. Suppose
that (a+ bi)(c+ di) ∈ I. As

(a+ bi)(c+ di) = (ac− bd) + (ad+ bc)i,

we have
3|(ac− bd) and 3|(ad+ bc).

Suppose that a + bi /∈ I. Adding and subtracting the two results
above we have

3|(a+ b)c− (b− a)d and 3|(a+ b)d+ (b− a)c.

Now either 3 divides a and it does not divide b, or vice-versa, or the
same is true, with a + b replacing a and a − b replacing b, as can be
seen by an easy case-by-case analysis. Suppose that 3 divides a whilst
3 does not divide b. Then 3|bd and so 3|d as 3 is prime. Similarly 3|c.
Thus we are done in this case. Similar analyses pertain in the other
cases.

Thus I is prime. It turns out that R/I is a field with nine elements.

Example 5.13. Now suppose that we replace 3 by 5 and look at the
resulting ideal J . I claim that J is not maximal.

Indeed consider x = 2 + i and y = 2− i. Then

xy = (2 + i)(2− i) = 4 + 1 = 5,

so that xy ∈ J , whilst neither x nor y are in J .
Thus J is not even prime.
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