
7. Euclidean Domains

Let R be an integral domain. We want to find natural conditions on
R such that R is a PID. Looking at the case of the integers, it is clear
that the key property is the division algorithm.

Definition 7.1. Let R be an integral domain. We say that R is Eu-
clidean, if there is a function

d : R− {0} −→ N ∪ {0},
which satisfies, for every pair of non-zero elements a and b of R,

(1)
d(a) ≤ d(ab).

(2) There are elements q and r of R such that

b = aq + r,

where either r = 0 or d(r) < d(a).

Example 7.2. The ring Z is a Euclidean domain. The function d is
the absolute value.

Definition 7.3. Let R be a ring and let f ∈ R[x] be a polynomial
with coefficients in R. The degree of f is the largest n such that the
coefficient of xn is non-zero.

Lemma 7.4. Let R be an integral domain and let f and g be two
elements of R[x].

Then the degree of fg is the sum of the degrees of f and g. In
particular R[x] is an integral domain.

Proof. Suppose that f has degree m and g has degree n. If a is the
leading coefficient of f and b is the leading coefficient of g then

f = axm + . . . and f = bxn + . . . ,

where . . . indicate lower degree terms then

fg = (ab)xm+n + . . . .

As R is an integral domain, ab 6= 0, so that the degree of fg is m+ n.
The second statement follows, by observing that a product fg can

only equal zero if its degree is zero, in which case both f and g are
constant polynomials and their product in R[x] is equal to their product
in R, which is zero only if one of f and g is zero. �

Definition-Lemma 7.5. Let k be a field and let R = k[x] be the
polynomial ring. Define a function

d : R− {0} −→ N ∪ {0}
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by sending f to its degree.
Then R is a Euclidean domain.

Proof. The first property of d follows from (7.4).
We prove the second property. Suppose that we are given two poly-

nomials f and g. We want to divide f into g. We proceed by induction
on the degree of g. If the degree of g is less than the degree of f , there
is nothing to prove, take q = 0 and r = g. Suppose the result holds for
all degrees less than the degree of g. We may suppose that

g = bxn + g1 and f = axm + f1,

where f1 and g1 are of degree less than m and n. Put q0 = cxn−m,
where c = b/a. Let h = g − q0f . Then h has degree less than g. By
induction then,

h = q1f + r,

where r has degree less than f . It follows that

g = h+ q0f

= (q0 + q1)f + r

= qf + r,

where q = q0 + q1. �

Definition-Lemma 7.6. Let R = Z[i] be the ring of Gaussian inte-
gers. Define a function

d : R− {0} −→ N ∪ {0},

by sending a+ bi to its norm, which is by definition a2 + b2.
Then the ring of Gaussian integers is a Euclidean domain.

Proof. Note first that if z is a complex number, then the absolute value
of z, defined as the square of the the product of z with its complex
conjugate z̄, is closely related to the norm of z.

In fact if z is a Gaussian integer x+ iy, then

|z|2 = zz̄ = x2 + y2 = d(z).

On the other hand, suppose we use polar coordinates, rather than
Cartesian coordinates, to represent a complex number,

z = reiθ.

Then r = |z|.
For any pair z1 and z2 of complex numbers, we have

|z1z2| = |z1||z2|.
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Indeed this is clear if we use polar coordinates. Now suppose that both
z1 and z2 are Gaussian integers. If we square both sides of the equation
above, we get

d(z1z2) = d(z1)d(z2).

As the absolute value of a Gaussian integer is always at least one, (1)
follows easily.

To prove (2), it helps to think about this problem geometrically.
First note that one may think of the Gaussian integers as being all
points in the plane with integer coordinates. Fix a Gaussian integer α.
To obtain all multiples of α = reiθ, that is, the principal ideal 〈α〉, it
suffices to take this lattice, rotate it through an angle of θ and stretch
it by an amount r. With this picture, it is clear that given any other
Gaussian integer β, there is a multiple of α, call it qα, such that the
square of the distance between β and qα is at most r2/2. Indeed let
γ = β/α. Pick a Gaussian integer q such that the square of the distance
between γ and q is at most 1/2. Then the distance between β = γα
and qα is at most r2/2. Thus we may write

β = qα + r,

(different r of course) such that d(r) < d(α). �

It might help to see a simple example of how this works in practice.
Suppose that we take a = 1 + i and b = 4 − 5i. The first step is to
construct

c =
b

a
.

Now aā = 12 + 12 = 2, so that the inverse of a is

ā

2
=

1− i
2

.

Multiplying by b we get

c =
āb

2

=
1

2
(1− i)(4− 5i)

= −1

2
(1 + 9i)

= −1

2
− 9

2
i.

Now we pick a Gaussian integer that is no more than a distance of 1
from c. For example −4i will do (indeed any one of −1− 5i, −5i, −4i
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and −1− 4i will work). This is our quotient q. The error at this point
is

s = c− q = −(
1

2
+
i

2
).

Now multiplying both sides by a, we get

r = sa = b− qa,
so that

b = qa+ r.

Thus

r = −1

2
(1 + i)2 = i.

Clearly
d(r) = 1 = 2d(s) < d(a) = 2,

as required.

Lemma 7.7. Every Euclidean domain is a PID.
In particular every Euclidean domain is a UFD.

Proof. Let I be an ideal in a Euclidean domain. We want to show that
I is a principal. If I is the zero ideal then I = 〈0〉. Otherwise, pick
a 6= 0 an element of I, such that d(a) is minimal. I claim that I = 〈a〉.
Suppose not. Clearly 〈a〉 ⊂ I, so that there must be an element b ∈ I
such that b /∈ 〈a〉.

We may write
b = aq + r,

where d(r) < d(a) and by assumption r 6= 0. But r = b− aq ∈ I, and
d(r) < d(a), which contradicts our choice of a. �

Corollary 7.8. The Gaussian integers and the polynomials over any
field are a UFD.

Of course, one reason why the division algorithm is so interesting, is
that it furnishes a method to construct the gcd of two natural numbers
a and b, using Euclid’s algorithm. Clearly the same method works in
an arbitrary Euclidean domain.
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