
9. Gauss Lemma

Obviously it would be nice to have some more general methods of
proving that a given polynomial is irreducible. The first is rather beau-
tiful and due to Gauss. The basic idea is as follows. Suppose we are
given a polynomial with integer coefficients. Then it is natural to also
consider this polynomial over the rationals. Note that it is much easier
to prove that this polynomial is irreducible over the integers than it is
to prove that it is irreducible over the rationals. For example it is clear
that

x2 − 2

is irreducible over the integers. In fact it is irreducible over the rationals
as well, that is,

√
2 is not a rational number.

First some definitions.

Definition 9.1. Let R be a commutative ring and let a1, a2, . . . , ak be
a sequence of elements of R. The gcd of a1, a2, . . . , ak is an element
d ∈ R such that

(1) d|ai, for all 1 ≤ i ≤ k.
(2) If d′|ai, for all 1 ≤ i ≤ k, then d′|d.

Lemma 9.2. Let R be a UFD.
Then the gcd of any sequence a1, a2, . . . , ak of elements of R exists.

Proof. There are two obvious ways to proceed.
The first is to take a common factorisation of each ai into a product

of powers of primes, as in the case k = 2.
The second is to recursively construct the gcd, by setting di to be

the gcd of di−1 and ai and taking d1 = a1. In this case d = dk will be
a gcd for the whole sequence a1, a2, . . . , ak. �

Definition 9.3. Let R be a UFD and let f(x) be a polynomial with
coefficients in R.

The content of f(x), denoted c(f), is the gcd of the coefficients of
f .

Example 9.4. Let f(x) = 24x3 − 60x + 40. Then the content of f is
4. Thus

f(x) = 4(8x3 − 15x+ 10).

Lemma 9.5. Let R be a UFD. Then every element of R[x] has a
factorisation of the form

cf,

where c ∈ R and the content of f is one.
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Proof. Obvious. �

Here is the key result.

Proposition 9.6. Let R be a UFD. Suppose that g and h ∈ R[x] and
let f(x) = g(x)h(x).

Then the content of f and the content of g times the content of h
are associates.

Proof. It is clear that the content of g divides the content of f . There-
fore we may assume that the content of g and h is one, and we only
have to prove that the same is true for f .

As R is a UFD, we just have to show that no prime p divides the
content of f . We may write

g(x) = amx
m+am−1x

m−1+· · ·+a0 and h(x) = bnx
n+bn−1x

n−1+· · ·+b0.
As the content of g is one, at least one coefficient of g is not divisible

by p. Let i be the first such, so that p divides ak, for k < i whilst p
does not divide ai. Similarly pick j so that p divides bk, for k < j,
whilst p does not divide bj.

Consider the coefficient of xi+j in f . This is equal to

a0bi+j + a1bi+j−1 + · · ·+ ai−1bj+1 + aibj + ai+1bj+1 + · · ·+ ai+jb0.

Note that p divides every term of this sum, except the middle one
aibj. Thus p does not divide the coefficient of xi+j. �

Theorem 9.7 (Gauss’ Lemma). Let R be a UFD and let f(x) ∈ R[x].
Let F be the field of fractions of R. Suppose that the content of f is
one and that we may write f(x) = u1(x)v1(x), where u1(x) and v1(x)
are in F [x].

Then we may find u(x) and v(x) in R[x] such that

f(x) = u(x)v(x)

where u(x) and v(x) are multiples of u1(x) and v1(x).
In particular if f is irreducible in R[x] then it is irreducible in F [x].

Proof. We have
f(x) = u1(x)v1(x).

Now clear denominators. That is, multiply through by the product
c of all the denominators in u1(x) and v1(x). In this way we get an
expression of the form

cf(x) = u2(x)v2(x),

where now u2 and v2 belong to R[x]. Now write

u2(x) = au(x) and v2(x) = bv(x),
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where u and v ∈ R[x] have content one. We get

cf(x) = abu(x)v(x).

By (9.6) we ab and c are associates. Thus, possibly multiplying u by a
unit, we have

f(x) = u(x)v(x). �

Corollary 9.8. Let R be a UFD.
Then R[x] is a UFD.

Proof. It is clear that the Factorisation algorithm terminates (or what
comes to the same thing, the set of principal ideals satisfies ACC), by
induction on the degree.

Therefore it suffices to prove that irreducible implies prime.
Suppose that f(x) ∈ R[x] is irreducible. If f has degree zero, then

it is an irreducible element of R and hence a prime element of R and
there is nothing to prove.

Otherwise we may assume that the content of f is one. By Gauss’
Lemma, f is not only irreducible in R[x] but also in F [x]. But then f
is a prime element of F [x] as F [x] is a UFD.

Now suppose that f divides gh. As f(x) is a prime in F [x], f divides
g or h in F [x]. Suppose it divides g. Then we may write

g = fk,

some k ∈ F [x]. As in the proof of Gauss’ Lemma, this means we may
write

g = fk′,

some k′ ∈ R[x]. But then f(x) divides g in R[x]. �

Corollary 9.9. Z[x] is a UFD.

Definition 9.10. Let R be a commutative ring and let x1, x2, . . . , xn
be indeterminates.

A monomial in x1, x2, . . . , xn is a product of powers. If I = (d1, d2, . . . , dn),
then let

XI =
∏

xdii .

The degree d of a monomial is the sum of the degrees of the indi-
vidual terms,

∑
di.

The polynomial ring R[x1, x2, . . . , xn] is equal to the set of all finite
formal sums ∑

I

aIx
I ,
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with the obvious addition and multiplication. The degree of a poly-
nomial is the maximum degree of a monomial term that appears with
non-zero coefficient.

Example 9.11. Let x and y be indeterminates. A typical element of
Q[x, y] might be

x2 + y2 − 1.

This has degree 2. Note that xy also has degree two. A more compli-
cated example might be

2

3
x3 − 7xy + y5,

a polynomial of degree 5.

Lemma 9.12. Let R be a commutative ring and let x1, x2, . . . , xn be
indeterminates. Let S = R[x1, x2, . . . , xn−1]. Then there is a natural
isomorphism

R[x1, x2, . . . , xn] ' S[xn].

Proof. Both sides statisfy a universal property; given any ring homo-
morphism φ : R −→ T and any elements a1, a2, . . . , an ∈ T there is a
unique ring homomorphism from the polynomial ring in x1, x2, . . . , xn
extending φ and sending xi to ai. Thus there is a natural isomor-
phism. �

To illustrate why (9.12) is true, it will probably help to give an
example. Consider the polynomial

2

3
x3 − 7xy + y5.

Consider this as a polynomial in y, whose coefficients lie in the ring
R[x]. That is

y5 + (−7x)y + 2/3x3 ∈ R[x][y].

Corollary 9.13. Let R be a UFD. Then R[x1, x2, . . . , xn] is a UFD.

Proof. By induction on n. The case n = 1 is (9.8).
Set S = R[x1, x2, . . . , xn−1]. By induction S is a UFD. But then

S[x] ' R[x1, x2, . . . , xn] is a UFD. �

Now we give a way to prove that polynomials with integer coefficients
are irreducible.

Lemma 9.14. Let
φ : R −→ S

be a ring homomorphism.
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Then there is a unique ring homomorphism

ψ : R[x] −→ S[x]

which makes the following diagram commute

R
φ - S

R[x]
?

ψ- S[x]
?

and which sends x to x.

Proof. Let
f : R −→ S[x]

be the composition of φ with the natural inclusion of S into S[x]. By
the universal property of R[x], there is a unique ring homomorphism

ψ : R[x] −→ S[x].

The rest is clear. �

Theorem 9.15 (Eisenstein’s Criteria). Let

f(x) = anx
n + an−1x

n−1 + · · ·+ a0

be a polynomial with integer coefficients. Suppose that there is a prime
p such that p divides ai, i ≤ n − 1, p does not divide an and p2 does
not divide a0.

Then f(x) is irreducible in Q[x].

Proof. Note that the content of f is not divisible by p. Pulling out
the content from f we may assume that the content is one. By Gauss’
Lemma, it suffices to prove that f is irreducible over Z.

Suppose not. Then we may find two polynomials g(x) and h(x), of
positive degree, with integral coefficients, such that

f(x) = g(x)h(x).

Suppose that

f(x) = anx
n + an−1x

n−1 + · · ·+ a0

g(x) = bdx
d + bd−1x

d−1 + · · ·+ b0

h(x) = cex
e + ce−1x

e−1 + · · ·+ c0.

for some n, d and e > 1. As an = bdce and an is not divisible by p,
then neither is bd nor ce.

Consider the natural ring homomorphism

Z −→ Fp.
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This induces a ring homomorphism

Z[x] −→ Fp[x].

It is convenient to denote the image of a polynomial g(x) as ḡ(x). As
we have a ring homomorphism,

f̄(x) = ḡ(x)h̄(x).

Since the leading coefficient of f is not divisible by p, f̄(x) has the
same degree as f(x), and the same holds for g(x) and h(x). On the
other hand, every other coefficient of f(x) is divisible by p, and so

f̄(x) = ānx
n.

Since Fp is a field, Fp[x] is a UFD and so ḡ(x) = b̄dx
d and h̄(x) = c̄ex

e.
It follows that every other coefficient of g(x) and h(x) is divisible by p.
In particular b0 and c0 are both divisible by p, and so, as a0 = b0c0, a0
must be divisible by p2, a contradiction. �

Example 9.16. Let

f(x) = 2x7 − 15x6 + 60x5 − 18x4 − 9x3 + 45x2 − 3x+ 6.

Then f(x) is irreducible over Q. We apply Eisenstein with p = 3.
Then the top coefficient is not divisible by 3, the others are, and the
smallest coefficient is not divisible by 9 = 32.

Lemma 9.17. Let p be a prime. Then

f(x) = xp−1 + xp−2 + · · ·+ x+ 1,

is irreducible over Q.

Proof. By Gauss’ Lemma, it suffices to prove that f(x) is irreducible
over Z.

First note that

f(x) =
xp − 1

x− 1
,

as can be easily checked. Consider the change of variable

y = x+ 1.

As this induces an automorphism

Z[x] −→ Z[x]
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by sending x to x+1, this will not alter whether or not f is irreducible.
In this case

f(y) =
(y + 1)p − 1

y

= yp−1 +

(
p

1

)
yp−2 +

(
p

2

)
yp−3 + · · ·+

(
p

p− 1

)
= yp−1 + pyp−2 + · · ·+ p.

Note that
(
p
i

)
is divisible by p, for all 1 ≤ i < p, and the constant

coefficient is not divisible buy p2, so that we can apply Eisenstein to
f(y), using the prime p. �
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